The incorporation of reinforcing fillers into natural rubber latex (NR) to achieve superior elasticity and mechanical properties has been widely applied across various fields. However, the tendency of reinforcing fillers to agglomerate within NR limits their potential applications. In this study, multi-walled carbon nanotube (MWCNT)–silica (SiO2)/NR composites were prepared using a solution blending method, aiming to enhance the performance of NR composites through the synergistic effects of dual-component fillers. The mechanical properties, dispersion behavior, and Payne effect of three types of composites—SiO2/NR (SNR), MWCNT/NR (MNR), and MWCNT-SiO2/NR (MSNR)—were investigated. In addition, the mean square displacement (MSD), fractional free volume (FFV), and binding energy of the three composites were simulated using molecular dynamics (MD) models. The results showed that the addition of a two-component filler increased the tensile strength, elongation at break, and Young’s modulus of NR composites by 56.4%, 72.41%, and 34.44%, respectively. The Payne effect of MSNR was reduced by 4.5% compared to MNR and SNR. In addition, the MD simulation results showed that the MSD and FFV of MSNR were reduced by 21% and 17.44%, respectively, and the binding energy was increased by 69 times, which was in agreement with the experimental results. The underlying mechanisms between the dual-component fillers were elucidated through dynamic mechanical analysis (DMA), a rubber process analyzer (RPA), and field emission scanning electron microscopy (SEM). This study provides an effective reference for broadening the application fields of NR.
Read full abstract