The determination of airborne redox-active compounds (ARC) is essential for monitoring adverse environmental changes and understanding the potential impact on human health. With the exception of relying on the common total organic carbon (TOC) analyzer and dithiothreitol (DTT) assay, there is currently no easy-to-use method for quantitative assessment. Herein, a compatible and easy-to-use colorimetric sensing strategy was developed for on-site ARC quantification. This approach integrated a plasmonic sensing system, where the ARC-induced gold nanoparticles (AuNPs) reduction, localized surface plasmon resonance (LSPR), and the light-mediated photochemistry collaborated to achieve a limit of detection (LOD) at 0.05 μg∙mm−2 on the filters. Distinguished from the abovementioned methods, the ARC content can be directly determined by in-situ monitoring the colorimetric reaction on the sampling quartz filters (QF) without additional sample pre-treatment. Apart from utilizing the standard benchtop photodetector (e.g., UV–VIS spectrophotometer), the colorimetric images of AuNP@QF samples could also be imaged by a smartphone camera in a sealed box and analyzed through a smartphone-based application to read the RGB (Red, Green, Blue) values for ARC quantification. The good correlation between the results using the spectrophotometer and smartphone validate the applicability of the AuNP sensor. The smartphone-based method was then deployed to test real-world aerosols collected from Zurich, Bern and Rigi and the results of ARC exhibited a positive correlation with that of PM10. With the advantages of low-cost, easy-operation and no need for pre-treatment, this smartphone-based plasmonic system holds great potential for rapid and portable ARC detection and corresponding air quality assessment.
Read full abstract