BackgroundAnalyzing free-living physical activity (PA) data presents challenges due to variability in daily routines and the lack of activity labels. Traditional approaches often rely on summary statistics, which may not capture the nuances of individual activity patterns. To address these limitations and advance our understanding of the relationship between PA patterns and health outcomes, we propose a novel motif clustering algorithm that identifies and characterizes specific PA patterns.MethodsThis paper proposes an elastic distance-based motif clustering algorithm for identifying specific PA patterns (motifs) in free-living PA data. The algorithm segments long-term PA curves into short-term segments and utilizes elastic shape analysis to measure the similarity between activity segments. This enables the discovery of recurring motifs through pattern clustering. Then, functional principal component analysis (FPCA) is then used to extract digital biomarkers from each motif. These digital biomarkers can subsequently be used to explore the relationship between PA and health outcomes of interest.ResultsWe demonstrate the efficacy of our method through three real-world applications. Results show that digital biomarkers derived from these motifs effectively capture the association between PA patterns and disease outcomes, improving the accuracy of patient classification.ConclusionsThis study introduced a novel approach to analyzing free-living PA data by identifying and characterizing specific activity patterns (motifs). The derived digital biomarkers provide a more nuanced understanding of PA and its impact on health, with potential applications in personalized health assessment and disease detection, offering a promising future for healthcare.
Read full abstract