Four well-known procedures for analog speech privacy have been compared in terms of residual intelligibility, bandwidth expansion, and encoding delay. Intelligibility scores have been determined from a perceptual experiment where about 70 untrained listeners were given the task of recognizing each of 200 spoken digits that occurred in a balanced set of 50 encrypted four-digit utterances, and by averaging resulting probabilities of correct digit recognition. Bandwidth expansion has been expressed in terms of a new segmental measure that is more sensitive to short-time bandwidth manipulations than a conventional, long-time-averaged power spectrum measurement. Encoding delay is a straightforward function of analog scrambler parameters. The scrambling procedures that have been compared are sample permutation ( <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">S</tex> ), block permutation ( <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</tex> ), frequency inversion ( <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">F</tex> ), and a combination of methods <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</tex> and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">F</tex> , denoted by [ <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">BF</tex> ]. Sample permutations involved a contiguous set of L <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">S</inf> (2 to 128) 8 kHz samples, while block permutations operated on a contiguous set of N <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</inf> (4 to 128) speech segments each of which was L <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</inf> (8 to 256) samples long. Frequency inversion is obtained by simply inverting the sign of every other Nyquist (8 kHz) sample. The parameters, <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">L_{s},N_{B}</tex> , and L <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</inf> , determine residual intelligibility as well as transmission properties such as encoding delay and bandwidth. The comparisons in our study provide a quantitative justification for the popular approach [ <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">BF</tex> ]. For example, with <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">N_{B} = 8</tex> and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">L_{B} =128</tex> , although the encoding delay is as much as 128 ms, the bandwidth expansion is only about 100 Hz (using the new segmental measure), and the digit intelligibility <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">I</tex> is 20 percent. Note that in the specific problem of recognizing ten digits, purely random (input-independent) listener responses correspond to <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">I = 10</tex> percent.