In the past, low-frequency analog control circuits were largely used in analog control systems. With the rapid development of modern digital electronic technology, the digitization of traditional low-frequency analog control circuits while retaining the same functions as the original analog control systems has become an important trend in the field of electronic design. For this reason, this study aimed to develop an analog signal digitization model for control signals at a low frequency below 10 Hz. In terms of signal receiving and transmission requirements, the proposed model is configured with analog-to-digital converter (ADC), digital-to-analog converter (DAC), and pulse width modulation (PWM) functions. In the development environment, the input and output signals are first normalized and processed with PWM, enabling the digital signal processor to deal with analog signal receiving, processing, and external transmission. To replace the existing compensator in analog circuits, a digital compensator is used in the digital signal processor. Based on the bilinear function in MATLAB software, the parameter values demanded for the digital compensator can thus be obtained, achieving the automatic calculation of bilinear transformation in the system. Multisim simulation is then used to simulate analog circuit systems for comparison with the digitized outcomes. The experimental results reveal that the performance of the designed digital control circuit matches the simulation outcomes in both Bode gain (dB) and phase responses when the signal frequency is below 10 Hz. The effectiveness of the digitized analog control circuit for low-frequency control signals is therefore confirmed.
Read full abstract