A series of 12 new dibemethin ( N-benzyl- N-methyl-1-phenylmethanamine) derivatives bearing an N-aminomethyl group attached to the one phenyl ring and an H, Cl, OCH 3 or N(CH 3) 2 group on the other have been synthesized. These compounds all showed strong chloroquine chemosensitizing activity, comparable to verapamil, when present at 1 μM in an in vitro culture of the chloroquine-resistant W2 strain of the human malaria parasite, Plasmodium falciparum. Their N-formylated derivatives also exhibited resistance-reversing activity, but only at substantially higher IC 10 concentrations. A number of the dibemethin derivatives were shown to inhibit chloroquine transport via the parasite’s ‘chloroquine resistance transporter’ (PfCRT) in a Xenopus laevis oocyte expression system. The reduced resistance-reversing activity of the formylated compounds relative to their free amine counterparts can probably be ascribed to two factors: decreased accumulation of the formylated dibemethins within the parasite’s internal digestive vacuole (believed to be the site of action of chloroquine), and a reduced ability to inhibit PfCRT. The resistance-reversing activity of the compounds described here demonstrates that the amino group need not be attached to the two aromatic rings via a three or four carbon chain as has been suggested by previous QSAR studies. These compounds may be useful as potential side chains for attaching to a 4,7-dichloroquinoline group in order to generate new resistance-reversing chloroquine analogues with inherent antimalarial activity.