This study focused on the problem that simultaneous nitrogen and phosphorus removal cannot be achieved in current urban sewage treatment systems. To address this, a pilot system was developed to first use immobilized biologically active fillers to remove nitrogen, and then use activated sludge to independently remove phosphorus. The goal was to maximize the effectiveness of biological phosphorus removal. This study mainly aimed at analyzing the post-independent phosphorus removal characteristics and mechanisms; the composition of the phosphorus removing bacteria; and the contribution rate of the system. The effluent PO43--P of the system remained stable at 0.15–0.2 mgL−1, with the phosphorus removal anaerobic tank maintaining a "micro-release" state. When the hydraulic retention time (HRT) of the aerobic phosphorus removal tank was reduced to 1 h, the contribution rate of the aerobic phosphorus removal bacteria decreased from 28.42% to 16.68%; the contribution rate of the denitrifying phosphorus removal bacteria increased from 72.58% to 83.32%; and the abundance of the dominant bacteria Dechloromonas and Thaurea significantly increased. The phosphorus removal system provides a new approach for deep phosphorus removal in main municipal wastewater systems.
Read full abstract