The oscillation phenomena reported in the preceding article for the anaerobic continuous fermentation of glycerol by Klebsiella pneumoniae are analyzed in terms of metabolic fluxes (metabolic rates and yields) and stoichiometry of pathways. Significant oscillations in the fluxes of CO(2), H(2), formic acid, ethanol, and reducing equivalents are observed which show obvious relationships to each other. Changes in the consumption or production rates of glycerol, acetic acid, 1,3-propanediol, and ATP are irregular and have relatively small amplitudes compared with their absolute values. By comparing the metabolic fluxes under oscillation and steady state that have nearly the same environmental conditions it could be shown that pyruvate metabolism is the main step affected under oscillation conditions. The specific formation rates of all the products originating from pyruvate metabolism (CO(2), H(2), formic acid, ethanol, acetic acid, lactic acid, and 2,3-butanediol) show significant differences under conditions of oscillation and steady state. In contrast, the specific rates of substrate uptake, ATP generation, and formation of products deriving either directly from glycerol (1,3-propanediol) or from the upstream of pyruvate metabolism (e.g., succinic acid) are not, or at least not significantly, affected during oscillation. Stoichiometric analysis of metabolic pathways confirms that other enzyme systems, in addition to pyruvate: formate-lyase, must be simultaneously involved in the pyruvate decarboxylation under both oscillation and steady-state conditions. The results strongly suggest oscillations of activities of these enzymes under oscillation conditions. It appears that the reason for the occurrence of oscillation and hysteresis lies in an unstable regulation of pyruvate metabolism of different enzymes triggered by substrate excess and drastic change(s) of environmental conditions.