This study uses three different operating phases for a sequencing batch reactor (SBR) combined with an anaerobic baffled reactor (ABR) to determine the effect of deep nitrogen and carbon removal by the "partial nitrification-anaerobic ammonium oxidation combined denitrification" (termed PN-SAD) reaction. The effluent of the SBR (NO2--N/NH4+-N ratio range of 1-1.32) was accessed directly to the single compartment ABR anammox system in phase Ⅰ. The results showed that although the anammox reaction was stable, the combined process total nitrogen (TN) removal efficiency was<80%, and the TN concentration of effluent was~20 mg·L-1. In order to increase the denitrification function in the ABR, denitrifying sludge was added to the third compartment of the ABR in phase Ⅱ. We found that the TN removal efficiency of the coupling reaction was still low. An organic carbon source should be supplied in the latter stage of anammox if deep nitrogen removal is required. Therefore, in phase Ⅲ, the effluent of the SBR (NO2--N/NH4+-N ratio of ~5) was mixed with the partial raw water (mixed water NO2--N/NH4+-N ratio of ~1.4; C/N ratio of 2.5). The mixed water was connected to the single compartment of the ABR. The PN-SAD system not only achieved a good matrix ratio at the anammox stage, but also provided a good carbon source for denitrification. The chemical oxygen demand (COD) concentration of the effluent in the whole process was 50 mg·L-1, the TN concentration of the effluent was<6 mg·L-1, and the TN removal efficiency was 95%. We conclude that the stable operation of the combined PN-SAD reaction provides the basis for deep nitrogen and carbon removal using the combined SBR-ABR process.
Read full abstract