Amyotrophic Lateral Sclerosis (ALS) is a severe neurodegenerative disorder marked by the gradual loss of motor neurons, leading to significant disability and eventual death. Despite ongoing research, there are still limited treatment options, underscoring the need for a deeper understanding of the disease's complex mechanisms and the identification of new therapeutic targets. This review provides a thorough examination of ALS, covering its epidemiology, pathology, and clinical features. It investigates the key molecular mechanisms, such as protein aggregation, neuroinflammation, oxidative stress, and excitotoxicity that contribute to motor neuron degeneration. The role of biomarkers is highlighted for their importance in early diagnosis and disease monitoring. Additionally, the review explores emerging therapeutic approaches, including inhibitors of protein aggregation, neuroinflammation modulators, antioxidant therapies, gene therapy, and stem cell-based treatments. The advantages and challenges of these strategies are discussed, with an emphasis on the potential for precision medicine to tailor treatments to individual patient needs. Overall, this review aims to provide a comprehensive overview of the current state of ALS research and suggest future directions for developing effective therapies.