This study utilises amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) human brain samples from the GEO database and employs differential expression gene (DEG) analysis to identify genes that are pivotal in both neurodegenerative diseases. Through in depth GO and KEGG enrichment analyses, we elucidated the biological functions and potential pathways associated with these DEGs. Furthermore, by constructing protein‒protein interaction networks, we highlight the significance of shared DEGs in both cellular physiology and disease contexts. Analysis of drug‒gene associations revealed potential therapeutic compounds linked to ALS and PD treatment. Additionally, we explored the interactions between transcription factors, miRNAs, and common DEGs, revealing aspects of gene regulatory networks. This study provides insights into the molecular mechanisms of ALS and PD, offering valuable contributions to ongoing research and potential therapeutic avenues.
Read full abstract