Reserve starch, the main component of durum wheat semolina, is constituted of two glucan homopolymers (amylose and amylopectin) that differ in their chemical structure. Amylose is mainly a linear structure formed of α-1,4-linked glucose units, with a lower polymerization degree, whereas amylopectin is a highly branched structure of α-1,4-chains linked by α-1,6-bonds. Variation of the amylose/amylopectin ratio has a profound effect on the starch properties which may impact the wheat technological and nutritional characteristics and their possible use in the food and non-food sector. In this work a set of genotypes, with a range of amylose from 14.9 to 57.8%, derived from the durum wheat cv. Svevo was characterised at biochemical and rheological level and used to produce pasta to better understand the role of amylose content in a common genetic background. A negative correlation was observed between amylose content and semolina swelling power, starch peak viscosity, and pasta stickiness. A worsening of the firmness was observed in the low amylose pasta compared to the control (cv. Svevo), whereas no difference was highlighted in the high amylose samples. The resistant starch was higher in the high amylose (HA) pasta compared to the control and low amylose (LA) pasta. Noteworthy, the extent of starch digestion was reduced in the HA pasta while the LA genotypes offered a higher starch digestion, suggesting other possible applications.
Read full abstract