Alzheimer's disease (AD) is a chronic neurodegenerative disorder with a global impact. The past few decades have witnessed significant strides in comprehending the underlying pathophysiological mechanisms and developing diagnostic methodologies for AD, such as neuroimaging approaches. Neuroimaging techniques, including positron emission tomography and magnetic resonance imaging, have revolutionized the field by providing valuable insights into the structural and functional alterations in the brains of individuals with AD. These imaging modalities enable the detection of early biomarkers such as amyloid-β plaques and tau protein tangles, facilitating early and precise diagnosis. Furthermore, the emerging technologies encompassing blood-based biomarkers and neurochemical profiling exhibit promising results in the identification of specific molecular signatures for AD. The integration of machine learning algorithms and artificial intelligence has enhanced the predictive capacity of these diagnostic tools when analyzing complex datasets. In this review article, we will highlight not only some of the most used diagnostic imaging approaches in neurodegeneration research but focus much more on new tools like artificial intelligence, emphasizing their application in the realm of AD. These advancements hold immense potential for early detection and intervention, thereby paving the way for personalized therapeutic strategies and ultimately augmenting the quality of life for individuals affected by AD.