The RNA/DNA-binding protein TDP-43 plays a pivotal role in the ubiquitinated inclusions characteristic of TDP-43 proteinopathies, including most cases of frontotemporal lobar degeneration (FTLD-TDP) and Alzheimer disease (AD). To understand the mechanisms of pathological TDP-43 processing and identify potential biomarkers, we generated novel phosphorylation-independent monoclonal antibodies (MAbs) using bacteria-expressed human full-length recombinant TDP-43. Remarkably, we identified a distinctive MAb, No. 9, targeting an epitope in amino acid (aa) region 311-360 of the C-terminus. This antibody showed preferential reactivity for pathological TDP-43 inclusions, with only mild reactivity for normal nuclear TDP-43. MAb No. 9 revealed more pathology in FTLD-TDP type A and type B brains and in AD brains compared to the commercial p409/410 MAb. Using synthetic phosphorylated peptides, we also obtained MAbs targeting the p409/410 epitope. Interestingly, MAb No. 14 was found to reveal additional pathology in AD compared to the commercial p409/410 MAb, specifically, TDP-43-immunopositive deposits with amyloid plaques in AD brains. These unique immunopositivities observed with MAbs No. 9 and No. 14 are likely attributed to their conformation-dependent binding to TDP-43 inclusions. We expect that this novel set of MAbs will prove valuable as tools for future patient-oriented investigations into TDP-43 proteinopathies.
Read full abstract