Amplitude-versus-angle (AVA) inversion for pre-stack seismic data is a key technology in oil and gas reservoir prediction. Conventional AVA inversion contains two main stages. Stage one estimates the relative change rates of P-wave velocity, S-wave velocity and density, and stage two obtains the P-wave velocity, S-wave velocity and density based on their relative change rates through trace integration. An alternative way merges these two stages to estimate P-wave velocity, S-wave velocity and density directly. This way is less sensitive to noise in seismic data compared to conventional two-stage AVA inversion. However, the regularization for the direct AVA inversion is more complex. To regularize this merged inverse problem, the L0-norm-gradient of P-wave velocity, S-wave velocity and density was used. L0-norm-gradient regularization can provide inversion results with blocky features to make formation interfaces and geological edges precise. Then, L0-norm-gradient regularized AVA inversion was performed on the synthetic seismic traces. Next, a real seismic data line that contains three partial angle stack profiles was used to test the practice application. The inversion results from synthetic and real seismic data showed that L0-norm-gradient regularized AVA inversion is an effective way to estimate P-wave velocity, S-wave velocity and density.
Read full abstract