Abstract
In prestack seismic data, outlier errors occur and can negatively influence the outcome of the amplitude-versus-angle (AVA) inversion process. Hence, their effect needs to be minimized during AVA inversion. AVA inversion based on the [Formula: see text]-norm-based likelihood function is highly sensitive to outlier errors. In comparison, AVA inversion based on the [Formula: see text]-norm-based likelihood function is less affected by outlier errors, and for this reason we have used it with the total variation regularization method used as a constraint to invert discontinuities from geologic bodies. To ensure that the inversion results contain low-frequency components, prior information constraints from model parameters are added to the inverse objective function, which is then solved by the iterative reweighted least-squares method. Results of numerical tests and real-data examples from the application of this method indicate that the algorithm is strongly robust against noise, especially abnormal outlier errors, and that the results of the inversion are reasonable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.