To increase the detection accuracy of soil structure and moisture content in reconstituted soils under complex conditions, this study utilizes a 400 MHz ground-penetrating radar (GPR) to examine a study area consisting of loess, sandy loam, red clay, and mixed soil. The research involves analyzing the single-channel waveforms and two-dimensional images of GPR, preprocessing the data, obtaining envelope information via amplitude envelope detection, and performing a Hilbert transformation. This study employs a least squares fitting approach to the instantaneous phase envelope to ascertain the thickness of various soil layers. By utilizing the average envelope amplitude (AEA) method, a correlation between the radar’s early signal amplitude envelope and the soil’s shallow dielectric constant is established to invert the moisture content of the soil. The analysis integrates soil structure and moisture distribution data to investigate soil structure characteristics and moisture content performance under diverse soil properties and depths. The findings indicate that the envelope detection method effectively identifies stratification boundaries across different soil types; the AEA method is particularly efficacious in inverting the moisture content of reconstituted soils up to 3 m deep, with an average relative error ranging from 2.81% to 7.41%. Notably, moisture content variations in stratified reconstituted soils are more pronounced than those in mixed soil areas, displaying a marked stepwise increase with depth. The moisture content trends in the vertical direction of the same soil profile are generally consistent. This research offers a novel approach to studying reconstituted soils under complex conditions, confirming the viability of the envelope detection and AEA methods for intricate soil investigations and broadening the application spectrum of GPR in soil studies.