This article investigates the interaction between a surface gravity wave that propagates over an elastic plate based on linear viscoelastic foundation. The plate is considered to be thin and infinite and is modeled based on the Euler–Bernoulli beam theory. Static and dynamic boundary conditions are applied to the Laplace equation of the fluid domain. The dispersion relation of the wave–plate system is derived and ratio of surface wave amplitude and plate deflection is proposed. Considering dimensionless dispersion relation, two modes of propagating wave are attained. Problem is analyzed for two cases of presence and absence of viscous damping coefficient in the foundation of the elastic plate. It is shown that flexural rigidity of the submerged plate has considerable effect on wave decay and plate vibration. It is illustrated that shallowness has noticeable effect on the wave propagation frequency and a critical shallowness demarcates damped or overdamped excitation of the elastic plate based on the viscoelastic foundation. Moreover, effects of flexural rigidity of the plate, foundation stiffness coefficient, and foundation viscous coefficient on phase and group velocities of wave are discussed in the present study.
Read full abstract