In this paper, we investigate the performance of a dual-hop multiple-input–multiple-output (MIMO) amplify-and-forward (AF) relay network, where the source, relay, and destination are all equipped with multiple antennas. By using maximum ratio transmission (MRT) at the transmitter and maximum ratio combining (MRC) at the receiver, we first obtain the output signal-to-interference-plus-noise ratio (SINR) of the dual-hop AF relay system, considering multiple cochannel interferences (CCIs), as well as noise at the relay. Then, we derive an exact closed-form expression for the outage probability (OP), and the asymptotic result of OP at high SNR, which can be used to calculate the array gain and diversity order. Finally, computer simulations are conducted to validate the performance analysis. Our new analytical expressions not only provide a fast and efficient method to evaluate the system performance but enable us to gain valuable insights into the effects of key parameters on the MIMO AF relaying network performance that benefits from implementing multiple antennas at each of the three nodes as well.
Read full abstract