Two simulation models were used to investigate the epidemiology of St. Louis encephalitis virus (SLEv) in south Florida, one including sentinel hosts (chickens) and amplification hosts (wild birds), while the other one included age structure in the amplification host population. The overall population size of the vector, Culex nigripalpus, was a major factor in the likelihood of epizootics for both models, but the seasonal dynamics of the vector alone did not explain variation in transmission. Interactions between seasonal factors in the mosquito and reproduction in the wild amplification avian hosts appeared to be important in the likelihood of epizootics. Biased feeding between sentinel and amplification hosts affected the time course of virus prevalence and may have implications for the interpretation of sentinel data. The time of virus introduction strongly affected the timing of outbreaks but did not affect the likelihood of epizootics. In most cases, the outbreak occurred immediately after virus introduction; however, in some cases the outbreak was delayed until the mosquito population increased. This has implications for the timing of control strategies directed against mosquito populations.
Read full abstract