A commercial activated carbon (AC) was modified through iron oxide incorporation to obtain microwave absorbers (MWAs) for microwave-assisted pyrolysis. The influence of iron oxide content (5 and 20 wt% Fe3O4) and the modification methods were tested as follows: (1) in situ co-precipitation + washing step with Milli-Q; (2) in situ co-precipitation + washing step with Milli-Q/ethanol; and (3) physical iron oxide blending. The resulting MWAs were evaluated on the microwave-assisted pyrolysis of hardwood in a Milestone Flexiwave microwave reactor. The biochar yield varied from 24 wt% to 89 wt% and was influenced by the modification method rather than the iron oxide addition. The MWAs with physically blended iron oxide resulted in biochar yields comparable to conventional biochar (450 °C). Furthermore, the addition of iron oxide-activated carbon composites during the microwave-assisted pyrolysis caused a significant decrease in the biochar’s 16 EPA polycyclic aromatic hydrocarbons, mainly by reducing the amount of pyrene in the biochar.
Read full abstract