Abstract
Nitroxide radical polymers can undergo both excellent electrochemical redox reactions and a rapid "click" coupling reaction with carbon-centered radicals (i.e., nitroxide radical coupling (NRC) reaction). In this work, we report a strategy to functionalize poly(2,2,6,6,-tetramethylpiperidinyl-1-oxyl methacrylate) (PTMA) with pyrene side groups through a rapid and near quantitative NRC reaction. This resulted in P(TMA-co-PyMA) random copolymers with near quantitative amounts of pyrene along the PTMA chain for greater π-π interaction with rGO, while the nitroxide radicals on the polymer could simultaneously be used for energy storage. These copolymers can bind with reduced graphene oxide (rGO) and form layered composites through noncovalent π-π stacking, attaining molecular-level dispersion. Electrochemical performance of the composites with different polymer contents (24, 35, and 45 wt %), tested in lithium ion batteries, indicated that the layered structures consisting of P(TMA-co-PyMA) maintained greater capacities at high C-rates. This simple and efficient strategy to synthesize pyrene-functionalized polymers will provide new opportunities to fabricate many other polymer composite electrodes for desired electrochemical performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.