We previously isolated rat 14.7K-interacting protein-2 (rFIP-2) from the rat-wounded pulp. The protein, homologous to human FIP-2, is known as optineurin and was initially identified as a novel tumor necrosis factor-α (TNF-α)-inducible protein, and more recently, as an autophagy receptor. However, the biological role of optineurin in dental pulp remains elusive. We hypothesized that optineurin has a crucial role in regulating molecular processes during pulp inflammatory responses induced by TNF-α. We examined the kinetics of optineurin expression in pulp inflammation. Optineurin localization and expression were examined using rat pulp fibroblasts. The cells were treated with pharmacological inhibitors for TNF-α-induced inflammatory signals or with hydrogen peroxide as apoptotic stimuli. Stable optineurin-knockdown cells (OPTN-KD cells) were established by transfecting normal rat kidney cells with a vector expressing optineurin-specific small interfering RNA. Cell proliferation and the profiles of cytokines and intracellular signaling molecules were examined using OPTN-KD cells stimulated by TNF-α. Optineurin was localized in the cytoplasm and then translocated into the nucleus upon apoptotic stimuli. Optineurin expression was increased by TNF-α and decreased by a specific inhibitor of c-Jun N-terminal kinase. The OPTN-KD cells secreted smaller amounts of monocyte chemotactic protein-1 (MCP-1) and intracellular MCP-1 mRNA, and cell proliferation was significantly increased. Apoptosis-related signaling molecules were downregulated in OPTN-KD cells. These results demonstrated that optineurin is a crucial molecule mediated by TNF-α, which induces the production of inflammatory factors and apoptosis signaling, suggesting the presence of signaling interactions between optineurin and a transcription factor for MCP-1.