Ozone profiles are often used to investigate day-to-day and year-to-year variability in origins of free tropospheric ozone. With this in mind, more than 50 ozonesonde launches were conducted in Beltsville, MD, during the summers of 2004 through 2007. Budgets of free tropospheric ozone were calculated for each ozone profile in the four summers using a laminar identification (LID) method and unusual episodes were analyzed with respect to meteorological variables. The laminar method showed that stratosphere-to-troposphere transport (ST) accounted for greater than 50% of the free tropospheric ozone column on 17% of days sampled, a more pronounced influence than regional convective and lightning (RCL) sources. The ST origins were confirmed with trajectories, and tracers (water vapor and potential vorticity). The amount of free tropospheric ozone from ST and RCL sources varied from year-to-year (up to 13%) and can be explained by differences in mean meteorological patterns. On average, almost 30% of the free tropospheric column was attributed to ST influence, about twice as much as RCL, although the LID method may not capture weeks-old lightning influences as in a chemical model. The prevalence of ST ozone in summertime Beltsville soundings was similar to six sounding sites in the IONS-04 campaign [Thompson, A.M., et al., 2007b. Intercontinental Transport Experiment Ozonesonde Network Study (IONS, 2004): 1. Summertime upper tropospheric/lower stratosphere ozone over northeastern North America. J. Geophys. Res. 112, D12S12; Thompson, A.M., et al., 2007c. Intercontinental Transport Experiment Ozonesonde Network Study (IONS, 2004): 2. Tropospheric ozone budgets and variability over northeastern North America. J. Geophys. Res. 112, D12S13.] and to statistics from a 30 year climatology of European soundings [Collette, A., Ancellet, G., 2005. Impact of vertical transport processes on the tropospheric ozone layering above Europe. Part II: Climatological analysis of the past 30 years. Atmos. Environ. 39, 5423–5435]. The Beltsville record also demonstrated the value of soundings for air quality forecasting in an urban area. The 22 nighttime soundings collected over Beltsville in 2004–2007 can be divided into distinct polluted and unpolluted subsets, the former 20 ppbv higher in residual layer ozone (1 km) than the latter. These distinctions propagated to daytime differences of 10 ppbv at the surface in the Washington, DC, area, with the high-ozone residual layers leading to non-attainment of the National Ambient Air Quality Standard for ozone. More frequent ozone observations aloft appear essential for better understanding ozone variability and for enabling air quality modelers to achieve more accurate ozone forecasts.