Abstract
Abstract. In the last two decades, significant depletion of boundary layer ozone (ozone depletion events, ODEs) has been observed in both Arctic and Antarctic spring. ODEs are attributed to catalytic destruction by bromine radicals (Br plus BrO), especially during bromine explosion events (BEs), when high concentrations of BrO periodically occur. However, neither the exact source of bromine nor the mechanism for sustaining the observed high BrO concentrations is completely understood. Here, by considering the production of sea salt aerosol from snow lying on sea ice during blowing snow events and the subsequent release of bromine, we successfully simulate the BEs using a global chemistry transport model. We find that heterogeneous reactions play an important role in sustaining a high fraction of the total inorganic bromine as BrO. We also find that emissions of bromine associated with blowing snow contribute significantly to BrO at mid-latitudes. Modeled tropospheric BrO columns generally compare well with the tropospheric BrO columns retrieved from the GOME satellite instrument (Global Ozone Monitoring Experiment). The additional blowing snow bromine source, identified here, reduces modeled high latitude lower tropospheric ozone amounts by up to an average 8% in polar spring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.