• All Solutions All Solutions
    • Editage

      One platform for all researcher needs

    • Paperpal

      AI-powered academic writing assistant

    • R Discovery

      Your #1 AI companion for literature search

    • Mind the Graph

      AI tool for graphics, illustrations, and artwork

    Unlock unlimited use of all AI tools with the Editage Plus membership.

    Explore Editage Plus
  • Support All Solutions
    discovery@researcher.life
Discovery Logo
Paper
Search Paper
Cancel
Ask R Discovery
Features
  • Top Papers
  • Library
  • audio papers link Audio Papers
  • translate papers link Paper Translation
  • translate papers link Chrome Extension
Explore

Content Type

  • Preprints
  • Conference Papers
  • Journal Articles

More

  • Research Areas
  • Topics
  • Resources

Amount Of Total RNA Research Articles

  • Share Topic
  • Share on Facebook
  • Share on Twitter
  • Share on Mail
  • Share on SimilarCopy to clipboard
Follow Topic R Discovery
By following a topic, you will receive articles in your feed and get email alerts on round-ups.
Overview
495 Articles

Published in last 50 years

Related Topics

  • Amount Of RNA
  • Amount Of RNA
  • Total RNA
  • Total RNA
  • RNA Samples
  • RNA Samples
  • High-quality RNA
  • High-quality RNA

Articles published on Amount Of Total RNA

Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
495 Search results
Sort by
Recency
Impact of Different Cell Counting Methods in Molecular Monitoring of Chronic Myeloid Leukemia Patients.

Background: Detection of BCR-ABL1 transcript level via real-time quantitative-polymerase-chain reaction (Q-PCR) is a clinical routine for disease monitoring, assessing Tyrosine Kinase Inhibitor therapy efficacy and predicting long-term response in chronic myeloid leukemia (CML) patients. For valid Q-PCR results, each stage of the laboratory procedures need be optimized, including the cell-counting method that represents a critical step in obtaining g an appropriate amount of RNA and reliable Q-PCR results. Traditionally, manual or automated methods are used for the detection and enumeration of white blood cells (WBCs). Here, we compared the performance of the manual counting measurement to the flow cytometry (FC)-based automatic counting assay employing CytoFLEX platform. Methods: We tested five different types of measurements: one manual hemocytometer-based count and four FC-based automatic cell-counting methods, including absolute, based on beads, based on 7-amino actinomycin D, combining and associating beads and 7AAD. The recovery efficiency for each counting method was established considering the quality and quantity of total RNA isolated and the Q-PCR results in matched samples from 90 adults with CML. Results: Our analyses showed no consistent bias between the different types of measurements, with comparable number of WBCs counted for each type of measurement. Similarly, we observed a 100% concordance in the amount of RNA extracted and in the Q-PCR cycle threshold values for both BCR-ABL1 and ABL1 gene transcripts in matched counted specimens from all the investigated groups. Overall, we show that FC-based automatic absolute cell counting has comparable performance to manual measurements and allows accurate cell counts without the use of expensive beads or the addition of the time-consuming intercalator 7AAD. Conclusions: This automatic method can replace the more laborious manual workflow, especially when high-throughput isolations from blood of CML patients are needed.

Read full abstract
  • Diagnostics
  • Apr 22, 2022
  • Stefania Stella + 12
Open Access
Cite
Save

Examining potential confounding factors in gene expression analysis of human saliva and identifying potential housekeeping genes

Isolation of RNA from whole saliva, a non-invasive and easily accessible biofluid that is an attractive alternative to blood for high-throughput biodosimetry of radiological/nuclear victims might be of clinical significance for prediction and diagnosis of disease. In a previous analysis of 12 human samples we identified two challenges to measuring gene expression from total RNA: (1) the fraction of human RNA in whole saliva was low and (2) the bacterial contamination was overwhelming. To overcome these challenges, we performed selective cDNA synthesis for human RNA species only by employing poly(A)+-tail primers followed by qRT-PCR. In the current study, this approach was independently validated on 91 samples from 61 healthy donors. Additionally, we used the ratio of human to bacterial RNA to adjust the input RNA to include equal amounts of human RNA across all samples before cDNA synthesis, which then ensured comparable analysis using the same base human input material. Furthermore, we examined relative levels of ten known housekeeping genes, and assessed inter- and intra-individual differences in 61 salivary RNA isolates, while considering effects of demographical factors (e.g. sex, age), epidemiological factors comprising social habits (e.g. alcohol, cigarette consumption), oral hygiene (e.g. flossing, mouthwash), previous radiological diagnostic procedures (e.g. number of CT-scans) and saliva collection time (circadian periodic). Total human RNA amounts appeared significantly associated with age only (P ≤ 0.02). None of the chosen housekeeping genes showed significant circadian periodicity and either did not associate or were weakly associated with the 24 confounders examined, with one exception, 60% of genes were altered by mouthwash. ATP6, ACTB and B2M represented genes with the highest mean baseline expression (Ct-values ≤ 30) and were detected in all samples. Combining these housekeeping genes for normalization purposes did not decrease inter-individual variance, but increased the robustness. In summary, our work addresses critical confounders and provides important information for the successful examination of gene expression in human whole saliva.

Read full abstract
  • Scientific Reports
  • Feb 10, 2022
  • P Ostheim + 15
Open Access
Cite
Save

Systematic comparative analysis of strand-specific RNA-seq library preparation methods for low input samples

Despite the recent precipitous decline in the cost of genome sequencing, library preparation for RNA-seq is still laborious and expensive for applications such as high throughput screening. Limited availability of RNA generated by some experimental workflows poses an additional challenge and increases the cost of RNA library preparation. In a search for low cost, automation-compatible RNA library preparation kits that maintain strand specificity and are amenable to low input RNA quantities, we systematically tested two recent commercial technologies—Swift RNA and Swift Rapid RNA, presently offered by Integrated DNA Technologies (IDT) —alongside the Illumina TruSeq stranded mRNA, the de facto standard workflow for bulk transcriptomics. We used the Universal Human Reference RNA (UHRR) (composed of equal quantities of total RNA from 10 human cancer cell lines) to benchmark gene expression in these kits, at input quantities ranging between 10 to 500 ng. We found normalized read counts between all treatment groups to be in high agreement. Compared to the Illumina TruSeq stranded mRNA kit, both Swift RNA library kits offer shorter workflow times enabled by their patented Adaptase technology. We also found the Swift RNA kit to produce the fewest number of differentially expressed genes and pathways directly attributable to input mRNA amount.

Read full abstract
  • Scientific Reports
  • Feb 2, 2022
  • Swati Naphade + 4
Open Access
Cite
Save

Normalized Ribo-Seq for Quantifying Absolute Global and Specific Changes in Translation.

Ribosome profiling (Ribo-Seq) is a highly sensitive method to quantify ribosome occupancies along individual mRNAs on a genome-wide scale. Hereby, ribosome-protected fragments (= footprints) are generated by nuclease digestion, isolated, and sequenced together with the corresponding randomly fragmented input samples, to determine ribosome densities (RD). For library preparation, equal amounts of total RNA are used. Subsequently, all transcript fragments are subjected to linker ligation, cDNA synthesis, and PCR amplification. Importantly, the number of reads obtained for every transcript in input and footprint samples during sequencing depends on sequencing depth and library size, as well as the relative abundance of the transcript in the sample. However, the information pertaining to the absolute amount of input and footprint sequences is lost during sample preparation, hence ruling out any conclusion whether translation is generally suppressed or activated in one condition over the other. Therefore, the RD fold-changes determined for individual genes do not reflect absolute regulation, but have to be interpreted as relative to bulk mRNA translation. Here, we modified the original ribosome profiling protocol that was first established by Ingolia et al. (2009), by adding small amounts of yeast lysate to the mammalian lysates of interest as a spike-in. This allows us to not only detect changes in the RD of specific transcripts relative to each other, but also to simultaneously measure global differences in RD (normalized ribosome density values) between samples. Graphic abstract: Global changes in translation efficiency can be detected with polysome profiling, where the proportion of polysomal ribosomes is interpreted as a proxy for ribosome density (RD) on bulk mRNA. Ribo-Seq measures changes in RD of specific mRNAs relative to bulk mRNA. The addition of a yeast-lysate, as a spike-in for normalization of read counts, allows for an absolute measurement of changes in RD.

Read full abstract
  • BIO-PROTOCOL
  • Jan 1, 2022
  • Katharina Hoerth + 2
Open Access
Cite
Save

De novo transcriptome assembly and identification of G-Protein-Coupled-Receptors (GPCRs) in two species of monogenean parasites of fish.

Genomic resources for Platyhelminthes of the class Monogenea are scarce, despite the diversity of these parasites, some species of which are highly pathogenic to their fish hosts. This work aimed to generate de novo-assembled transcriptomes of two monogenean species, Scutogyrus longicornis (Dactylogyridae) and Rhabdosynochus viridisi (Diplectanidae), providing a protocol for cDNA library preparation with low input samples used in single cell transcriptomics. This allowed us to work with sub-microgram amounts of total RNA with success. These transcriptomes consist of 25,696 and 47,187 putative proteins, respectively, which were further annotated according to the Swiss-Prot, Pfam, GO, KEGG, and COG databases. The completeness values of these transcriptomes evaluated with BUSCO against Metazoa databases were 54.1% and 73%, respectively, which is in the range of other monogenean species. Among the annotations, a large number of terms related to G-protein-coupled receptors (GPCRs) were found. We identified 109 GPCR-like sequences in R. viridisi, and 102 in S. longicornis, including family members specific for Platyhelminthes. Rhodopsin was the largest family according to GRAFS classification. Two putative melatonin receptors found in S. longicornis represent the first record of this group of proteins in parasitic Platyhelminthes. Forty GPCRs of R. viridisi and 32 of S. longicornis that were absent in Vertebrata might be potential drug targets. The present study provides the first publicly available transcriptomes for monogeneans of the subclass Monopisthocotylea, which can serve as useful genomic datasets for functional genomic research of this important group of parasites.

Read full abstract
  • Parasite
  • Jan 1, 2022
  • Víctor Caña-Bozada + 3
Open Access
Cite
Save

Characterization of Total RNA, CD44, FASN, and PTEN mRNAs from Extracellular Vesicles as Biomarkers in Gastric Cancer Patients.

Simple SummaryLiquid biopsy is an easily accessible and non-invasive method to gain information about tumor diseases. The purpose of our study was to determine the value of extracellular vesicle-derived mRNAs as biomarkers for the diagnosis of gastric cancer and the response to its treatment. In a cohort of 87 gastric cancer patients and a control group of 14 individuals, we analyzed the absolute RNA concentration from extracellular vesicles (EV) and the relative levels of FASN, PTEN, and CD44 mRNA, and their correlation with clinico-pathological features. These correlated with treatment, tumor grading, and the pathological subtype according to Laurén’s classification. This might reflect their potential as both diagnostic and therapeutic predictors.In-depth characterization has introduced new molecular subtypes of gastric cancer (GC). To identify these, new approaches and techniques are required. Liquid biopsies are trendsetting and provide an easy and feasible method to identify and to monitor GC patients. In a prospective cohort of 87 GC patients, extracellular vesicles (EVs) were isolated from 250 µL of plasma. The total RNA was isolated with TRIZOL. The total RNA amount and the relative mRNA levels of CD44, PTEN, and FASN were measured by qRT-PCR. The isolation of EVs and their contained mRNA was possible in all 87 samples investigated. The relative mRNA levels of PTEN were higher in patients already treated by chemotherapy than in chemo-naïve patients. In patients who had undergone neoadjuvant chemotherapy followed by gastrectomy, a decrease in the total RNA amount was observed after neoadjuvant chemotherapy and gastrectomy, while FASN and CD44 mRNA levels decreased only after gastrectomy. The amount of RNA and the relative mRNA levels of FASN and CD44 in EVs were affected more significantly by chemotherapy and gastrectomy than by chemotherapy alone. Therefore, they are a potential biomarker for monitoring treatment response. Future analyses are needed to identify GC-specific key RNAs in EVs, which could be used for the diagnosis of gastric cancer patients in order to determine their molecular subtype and to accompany the therapeutic response.

Read full abstract
  • Cancers
  • Nov 27, 2021
  • Philipp Rhode + 11
Open Access
Cite
Save

Novel single nucleotide polymorphisms in the bovine leukemia virus genome are associated with proviral load and affect the expression profile of viral non-coding transcripts

Bovine leukemia virus (BLV) infects bovine B-cells and causes malignant lymphoma, resulting in severe economic losses in the livestock industry. To control the spread of BLV, several studies have attempted to clarify the molecular mechanisms of BLV pathogenesis, but the details of the mechanism are still enigmatic. Currently, viral non-coding RNAs are attracting attention as a novel player for BLV pathogenesis because these transcripts can evade the host immune response and are persistently expressed in latent infection. One of the viral non-coding RNA, AS1, is encoded in the antisense strand of the BLV genome and consists of two isoforms, AS1-L and AS1-S. Although the function of the AS1 is still unknown, the AS1 RNA might also have some roles because it keeps expressing in tumor tissues. In the present study, we identified novel single nucleotide polymorphisms (SNPs) located in the AS1 coding region and indicated that individuals infected with BLV with minor SNPs showed low proviral load. To evaluate the effect of identified SNPs, we constructed infectious clones with these SNPs and found that their introduction affected the expression profile of AS1 RNA; the amount of AS1-L isoform increased compared with the wild type, although the total amount of AS1 RNA remained unchanged. Prediction analysis also suggested that the introduction of SNPs changed the secondary structure of AS1 RNA. These results explain part of the relationship between BLV expansion in vivo and the expression profile of AS1, although further analysis is required.

Read full abstract
  • Veterinary Microbiology
  • Aug 5, 2021
  • Kiyohiko Andoh + 5
Cite
Save

A Comprehensive Analysis of Northern versus Liquid Hybridization Assays for mRNAs, Small RNAs, and miRNAs Using a Non-Radiolabeled Approach.

Northern blotting (NB), a gold standard for RNA detection, has lost its charm due to its hands-on nature, need for good quality RNA, and radioactivity. With the emergence of the field of microRNAs (miRNAs), the necessity for sensitive and quantitative NBs has again emerged. Here, we developed highly sensitive yet non-radiolabeled, fast, economical NB, and liquid hybridization (LH) assays without radioactivity or specialized reagents like locked nucleic acid (LNA)- or digoxigenin-labeled probes for mRNAs/small RNAs, especially miRNAs using biotinylated probes. An improvised means of hybridizing oligo probes along with efficient transfer, cross-linking, and signal enhancement techniques was employed. Important caveats of each assay were elaborated upon, especially issues related to probe biotinylation, use of exonuclease, and bioimagers not reported earlier. We demonstrate that, while the NBs were sensitive for mRNAs and small RNAs, our LH protocol could efficiently detect these and miRNAs using less than 10–100 times the total amount of RNA, a sensitivity comparable to radiolabeled probes. Compared to NBs, LH was a faster, more sensitive, and specific approach for mRNA/small RNA/miRNA detection. A comparison of present work with six seminal studies is presented along with detailed protocols for easy reproducibility. Overall, our study provides effective platforms to study large and small RNAs in a sensitive, efficient, and cost-effective manner.

Read full abstract
  • Current issues in molecular biology
  • Jun 22, 2021
  • Waqar Ahmad + 3
Open Access
Cite
Save

Boosting D-carbamoylase activity of recombinantBacillus subtilisby adjusting gene dosage and central carbon metabolism

D-p-hydroxyphenylglycine (D-HPG) as an intermediate of semisynthetic antibiotics has an important value in the pharmaceutical industry. The high pollution and high costs of chemical synthesis make D-HPG production by biocatalysis more promising. The hydantoinase method requires D-hydantoinase and D-carbamoylase (DCase) to convert D,L-p-hydroxyphenylhydantoin (D,L-HPH) into D-HPG. The recombinantBacillus subtilisused for the whole-cell catalysis in this process needs to improve the activity and stability of DCase. The gene dosage and cell metabolism of DCase affect its activity, and this study intends to reduce the acidification effect caused by carbon catabolite repression at the genetic level. Among strains with different gene dosages, the double-copy integrated strain DN02 had the highest DCase average activity of 132 U/g dry cell weight (gDCW). When glucose was used as the carbon source, weakening glucose absorption can significantly alleviate the acidification of fermentation broth. TheglcTmutant reduced the average glucose absorption rate by about 57%, whereas the DCase activity increased to about 518 U/gDCW. In addition, modifying the CcpA-binding site incitZand the CodY-binding site incitBto increase their expression levels can also relieve the acidification of fermentation broth, which reduced the accumulation of acetate by 24% and 17%, respectively. The DCase activity of derivative strains DN16 and DN17 can reach about 615 and 641 U/gDCW. Comparing the catalytic activity of strains to dual-enzyme activities to produce D-HPG, the average whole-cell activity of strain DN17/pUBS was about fivefold higher than that of DN02/pUBS. These strategies might also be useful for other recombinant strains to express heterologous enzymes. Isolation of nucleic acids from various cells is a step of PCR. In this study, magnetic nanoparticles can be used to extract genomic DNA and total RNA due to their paramagnetism and biocompatibility. The amount and accuracy of DNA and total RNA extracted were verified by Polymerase Chain Reaction (PCR). The method has the advantages of removing dangerous reagents such as phenol and chloroform, replacing inorganic coating such as silica with organic oil, and shortening reaction time.

Read full abstract
  • Materials Express
  • May 1, 2021
  • Yan Du + 1
Cite
Save

The Comparison of Different Honey Bee Genotypes by Some Biochemical Parameters (Total Protein, Total RNA, Catalase and Malondialdehyde)

In this study, some biochemical characteristics (total protein, total RNA, Catalase: CAT enzyme activity and malondialdehyde: MDA level) of Italian bee (A. m. ligustica) and Caucasian bee (A. m. caucasica), and Muğla and Anatolian bees (A. m. anatolica) from local honey bee races were investigated comparatively. Laboratory analyzes of biochemical characteristics were performed on worker bees aged 24 days old with 10 repetitions using appropriate methods informed in the literature. The amounts of total protein of bee races given above were 18.39±1.28, 20.71±0.63, 18.56±1.24 and 20.95±2.15 g/dL, respectively; the amounts of total RNA were 11.46±0.18, 12.10±0.26, 11.87±0.20 and 12.27±0.26 µg/µL, respectively; the CAT activities were 4.59±0.46, 5.12±0.67, 4.88±0.48 and 5.25±0.53 kU/g P, respectively; the levels of MDA were 0.52±0.04, 0.50±0.04, 0.48±0.02 ve 0.43±0.05 mmol/mg, respectively. Variance analysis showed that statistically significant differences among races in terms of the all characteristics examined. The results of CAT activity which is one of the indicators of antioxidant defense system, and levels of MDA which is an indicator of peroxidation of membrane lipids; and similarly total amount of protein also includes various proteins such as antioxidants and enzymes; it can be said that the Anatolian and Caucasian bee races (due to higher total protein, total RNA and CAT activities, and lower MDA level) are more resistant to various negative environmental factors (e.g. climate, flora, pesticide, etc.) than the Muğla and Italian bee races in the conditions of the Central Anatolia Region; there are significant differences between the bee races in terms of amounts of total RNA and this parameter can be also used in the characterization of bee races.

Read full abstract
  • Turkish Journal of Agriculture - Food Science and Technology
  • Apr 25, 2021
  • Adnan Ünalan + 1
Open Access
Cite
Save

Actionable driver DNA variants and fusion genes can be detected in archived cytological specimens with the Oncomine Dx Target Test Multi-CDx system in lung cancer.

Molecular testing is critical for identifying actionable variants in lung cancer for precision medicine. When tumor tissue samples are unavailable, archived cytological specimens (ACSs) can be used. The authors examined whether oncogenic variants could be accurately detected in ACSs versus paired formalin-fixed, paraffin-embedded (FFPE) tumor tissues with in vitro diagnostic tests. The authors collected 18 ACSs and 15 FFPE tissues from 15 patients with lung cancer and investigated genomic profiles with the Oncomine Dx Target Test Multi-CDx system, which is an integrated next-generation sequencing platform that comprehensively examines 4 companion diagnostic target genes (epidermal growth factor receptor [EGFR]; B-Raf proto-oncogene, serine/threonine kinase [BRAF]; anaplastic lymphoma kinase [ALK]; and ROS proto-oncogene 1, receptor tyrosine kinase [ROS1]). They compared the quantity and quality of extracted nucleic acids, the sequencing quality control (QC), and the detected variants between ACSs and FFPE tissues. The total amount of DNA and RNA obtained from 1 slide was higher in FFPE tissues than ACSs. The RNA integrity number was higher in ACSs. There were no differences in sequencing QC between ACSs and FFPE tissues. A total of 21 variants, including EGFR mutations and ALK and ROS1 fusion genes, were detected in both ACSs and FFPE tissues with 100% concordance. ACSs can be a feasible alternative with which to identify actionable mutations and fusion genes via the Oncomine Dx Target Test Multi-CDx system.

Read full abstract
  • Cancer Cytopathology
  • Apr 19, 2021
  • Kenji Amemiya + 9
Open Access
Cite
Save

High-Quality Nucleic Acid Isolation from Hard-to-Lyse Bacterial Strains Using PMAP-36, a Broad-Spectrum Antimicrobial Peptide.

The efficiency of existing cell lysis methods to isolate nucleic acids from diverse bacteria varies depending on cell wall structures. This study tested a novel idea of using broad-spectrum antimicrobial peptides to improve the lytic efficiency of hard-to-lyse bacteria and characterized their differences. The lysis conditions of Staphylococcus aureus using recombinant porcine myeloid antimicrobial peptide 36 (PMAP-36), a broad-spectrum pig cathelicidin, was optimized, and RNA isolation was performed with cultured pellets of ten bacterial species using various membranolytic proteins. Additionally, three other antimicrobial peptides, protegrin-1 (PG-1), melittin, and nisin, were evaluated for their suitability as the membranolytic agents of bacteria. However, PMAP-36 use resulted in the most successful outcomes in RNA isolation from diverse bacterial species. The amount of total RNA obtained using PMAP-36 increased by ~2-fold compared to lysozyme in Salmonella typhimurium. Streptococci species were refractory to all lytic proteins tested, although the RNA yield from PMAP-36 treatment was slightly higher than that from other methods. PMAP-36 use produced high-quality RNA, and reverse transcription PCR showed the efficient amplification of the 16S rRNA gene from all tested strains. Additionally, the results of genomic DNA isolation were similar to those of RNA isolation. Thus, our findings present an additional option for high quality and unbiased nucleic acid isolation from microbiomes or challenging bacterial strains.

Read full abstract
  • International Journal of Molecular Sciences
  • Apr 16, 2021
  • Hye-Sun Cho + 8
Open Access
Cite
Save

Acute radiation syndrome-related gene expression in irradiated peripheral blood cell populations

Purpose In a nuclear or radiological event, an early diagnostic tool is needed to distinguish the worried well from those individuals who may later develop life-threatenFing hematologic acute radiation syndrome. We examined the contribution of the peripheral blood's cell populations on radiation-induced gene expression (GE) changes. Materials and methods EDTA-whole-blood from six healthy donors was X-irradiated with 0 and 4Gy and T-lymphocytes, B-lymphocytes, NK-cells and granulocytes were separated using immunomagnetic methods. GE were examined in cell populations and whole blood. Results The cell populations contributed to the total RNA amount with a ratio of 11.6 for T-lymphocytes, 1.2 for B-cells, 1.2 for NK-cells, 1.0 for granulocytes. To estimate the contribution of GE per cell population, the baseline (0Gy) and the radiation-induced fold-change in GE relative to unexposed was considered for each gene. The T-lymphocytes (74.8%/80.5%) contributed predominantly to the radiation-induced up-regulation observed for FDXR/DDB2 and the B-lymphocytes (97.1%/83.8%) for down-regulated POU2AF1/WNT3 with a similar effect on whole blood gene expression measurements reflecting a corresponding order of magnitude. Conclusions T- and B-lymphocytes contributed predominantly to the radiation-induced up-regulation of FDXR/DDB2 and down-regulation of POU2AF1/WNT3. This study underlines the use of FDXR/DDB2 for biodosimetry purposes and POU2AF1/WNT3 for effect prediction of acute health effects.

Read full abstract
  • International journal of radiation biology
  • Mar 3, 2021
  • Patrick Ostheim + 9
Open Access
Cite
Save

Quantitative probing of glycosylated queuosine modifications in tRNA.

Queuosine (Q) in humans is a microbiome-dependent modification in the wobble anticodon position of tRNATyr, tRNAHis, tRNAAsn, and tRNAAsp. These tRNAs share a G34U35N36 anticodon consensus. In humans, the Q base in tRNATyr and tRNAAsp is further glycosylated to generate galactosyl-Q (galQ) and mannosyl-Q (manQ) modifications. Q-tRNA modification is known to regulate translation in a codon dependent manner, but the function of Q glycosylation is unknown. A sensitive and quantitative detection method for Q-glycosylation in tRNA is essential to investigate its biological function. Although LC/MS was used in the characterization of glyco-Q tRNA, the requirements of large amount of input material and LC/MS expertise limit its application. We recently developed an acid denaturing gel and Northern blot method to sensitively detect galQ and manQ-tRNA modification and quantify their modification fractions using just microgram amounts of total RNA. This method uses the same acid denaturing gel system for separating charged from uncharged tRNA; however, deacylated, galQ and manQ modified tRNAs are also separated from unmodified tRNAs because of the positive charge carried by the secondary amine and the large chemical moiety of the glyco-Q base. Our method enables rapid investigation of glycosylated Q modification in tRNA, and also has the potential to investigate other large tRNA modifications that carry a positive charge under acid denaturing gel conditions.

Read full abstract
  • Methods in enzymology
  • Jan 1, 2021
  • Wen Zhang + 1
Cite
Save

Tumor RNA-loaded nanoliposomes increases the anti-tumor immune response in colorectal cancer

Purpose Tumor RNA vaccines can activate dendritic cells to generate systemic anti-tumor immune response. However, due to easily degraded of RNA, direct RNA vaccine is less effective. In this study, we optimized the method for preparing PEGylated liposom-polycationic DNA complex (LPD) nanoliposomes, increased encapsulate amount of total RNA derived from CT-26 colorectal cancer cells. Tumor RNA LPD nanoliposomes vaccines improved anti-tumor immune response ability of tumor RNA and can effectively promote anti-tumor therapeutic effect of oxaliplatin. Methods Total tumor-derived RNA was extracted from colorectal cancer cells (CT-26 cells), and loaded to our optimized the LPD complex, resulting in the LPD nanoliposomes. We evaluated the characteristics (size, zeta potential, and stability), cytotoxicity, transfection ability, and tumor-growth inhibitory efficacy of LPD nanoliposomes. Results The improved LPD nanoliposomes exhibited a spherical shape, RNA loading efficiency of 9.07%, the average size of 120.37 ± 2.949 nm and zeta potential was 3.34 ± 0.056 mV. Also, the improved LPD nanoliposomes showed high stability at 4 °C, with a low toxicity and high cell transfection efficacy toward CT-26 colorectal cancer cells. Notably, the improved LPD nanoliposomes showed tumor growth inhibition by activating anti-tumor immune response in CT-26 colorectal cancer bearing mice, with mini side effects toward the normal organs of mice. Furthermore, the effect of the improved LPD nanoliposomes in combination with oxaliplatin can be better than that of oxaliplatin alone. Conclusion The improved LPD nanoliposomes may serve as an effective vaccine to induce antitumor immunity, presenting a new treatment option for colorectal cancer.

Read full abstract
  • Drug Delivery
  • Jan 1, 2021
  • Dandong Dai + 9
Open Access
Cite
Save

RNA-Based Multiplexing Assay for Routine Testing of Fusion and Splicing Variants in Cytological Samples of NSCLC Patients.

The detection of ALK receptor tyrosine kinase (ALK), ROS proto-oncogen1, receptor tyrosine kinase (ROS1), ret proto-oncogen (RET), and MET proto-oncogen exon 14 skipping (METΔex14) allows for the selection of specific kinase inhibitor treatment in patients with non-small cell lung cancer (NSCLC). Multiplex technologies are recommended in this setting. We used nCounter, a multiplexed technology based on RNA hybridization, to detect ALK, ROS1, RET, and METΔex14 in RNA purified from cytological specimens (n = 16) and biopsies (n = 132). Twelve of the 16 cytological samples (75.0%) were evaluable by nCounter compared to 120 out of 132 (90.9%) biopsies. The geometrical mean (geomean) of the housekeeping genes of the nCounter panel, but not the total amount of RNA purified, was significantly higher in biopsies vs. cytological samples. Among cytological samples, we detected ALK (n = 3), METΔex14 (n = 1) and very high MET expression (n = 1) positive cases. The patient with METΔex14 had a partial response to tepotinib, one of the patients with ALK fusions was treated with crizotinib with a complete response. Cell blocks and cytological extensions can be successfully used for the detection of fusions and splicing variants using RNA-based methods such as nCounter.

Read full abstract
  • Diagnostics
  • Dec 23, 2020
  • Cristina Aguado + 11
Open Access
Cite
Save

Increased biological relevance of transcriptome analyses in human skeletal muscle using a model-specific pipeline

BackgroundHuman skeletal muscle responds to weight-bearing exercise with significant inter-individual differences. Investigation of transcriptome responses could improve our understanding of this variation. However, this requires bioinformatic pipelines to be established and evaluated in study-specific contexts. Skeletal muscle subjected to mechanical stress, such as through resistance training (RT), accumulates RNA due to increased ribosomal biogenesis. When a fixed amount of total-RNA is used for RNA-seq library preparations, mRNA counts are thus assessed in different amounts of tissue, potentially invalidating subsequent conclusions. The purpose of this study was to establish a bioinformatic pipeline specific for analysis of RNA-seq data from skeletal muscles, to explore the effects of different normalization strategies and to identify genes responding to RT in a volume-dependent manner (moderate vs. low volume). To this end, we analyzed RNA-seq data derived from a twelve-week RT intervention, wherein 25 participants performed both low- and moderate-volume leg RT, allocated to the two legs in a randomized manner. Bilateral muscle biopsies were sampled from m. vastus lateralis before and after the intervention, as well as before and after the fifth training session (Week 2).ResultBioinformatic tools were selected based on read quality, observed gene counts, methodological variation between paired observations, and correlations between mRNA abundance and protein expression of myosin heavy chain family proteins. Different normalization strategies were compared to account for global changes in RNA to tissue ratio. After accounting for the amounts of muscle tissue used in library preparation, global mRNA expression increased by 43–53%. At Week 2, this was accompanied by dose-dependent increases for 21 genes in rested-state muscle, most of which were related to the extracellular matrix. In contrast, at Week 12, no readily explainable dose-dependencies were observed. Instead, traditional normalization and non-normalized models resulted in counterintuitive reverse dose-dependency for many genes. Overall, training led to robust transcriptome changes, with the number of differentially expressed genes ranging from 603 to 5110, varying with time point and normalization strategy.ConclusionOptimized selection of bioinformatic tools increases the biological relevance of transcriptome analyses from resistance-trained skeletal muscle. Moreover, normalization procedures need to account for global changes in rRNA and mRNA abundance.

Read full abstract
  • BMC Bioinformatics
  • Nov 30, 2020
  • Yusuf Khan + 4
Open Access
Cite
Save

Magnetic microbeads-based amperometric immunoplatform for the rapid and sensitive detection of N6-methyladenosine to assist in metastatic cancer cells discrimination

This work describes the preparation of an immunoplatform for the sensitive and selective determination of N6-methyladenosine (m6A). The simple and fast protocol involves for the first time the use of micromagnetic immunoconjugates to establish a direct competitive assay between the m6A target and a biotinylated RNA oligomer bearing a single m6A enzymatically labelled with a commercial conjugate of streptavidin-peroxidase (Strep-HRP) as tracer. The cathodic current change measured in the presence of H2O2/hydroquinone (HQ) at screen-printed carbon electrodes (SPCEs) upon surface capturing the magnetic bioconjugates is inversely proportional to the m6A target concentration. After evaluating the effect of key variables, the analytical characteristics were established for the determination of three different targets: the N6-methyladenosine-5′-triphosphate (m6ATP) ribonucleotide, a short synthetic RNA oligomer bearing a single m6A and the positive control provided in a commercial colorimetric kit for m6A-RNA quantification. The obtained results show that this immunoplatform is competitive with other methods reported to date, achieving an improved sensitivity (limit of detection of 0.9 pM for the short synthetic oligomer) using a much simpler and faster protocol (~1 h) and disposable electrodes for the transduction. Furthermore, the applicability for discriminating the metastatic potential of cancer cells by directly analyzing a small amount of raw total RNA without enriching or fragmenting was also preliminary assessed.

Read full abstract
  • Biosensors and Bioelectronics
  • Oct 8, 2020
  • Eloy Povedano + 9
Cite
Save

High sensitivity of one-step real-time reverse transcription quantitative PCR to detect low virus titers in large mosquito pools

BackgroundMosquitoes are the deadliest animals in the world. Their ability to carry and spread diseases to humans causes millions of deaths every year. Due to the lack of efficient vaccines, the control of mosquito-borne diseases primarily relies on the management of the vector. Traditional control methods are insufficient to control mosquito populations. The sterile insect technique (SIT) is an additional control method that can be combined with other control tactics to suppress specific mosquito populations. The SIT requires the mass-rearing and release of sterile males with the aim to induce sterility in the wild female population. Samples collected from the environment for laboratory colonization, as well as the released males, should be free from mosquito-borne viruses (MBV). Therefore, efficient detection methods with defined detection limits for MBV are required. Although a one-step reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) method was developed to detect arboviruses in human and mosquito samples, its detection limit in mosquito samples has yet to be defined.MethodsWe evaluated the detection sensitivity of one step RT-qPCR for targeted arboviruses in large mosquito pools, using pools of non-infected mosquitoes of various sizes (165, 320 and 1600 mosquitoes) containing one infected mosquito body with defined virus titers of chikungunya virus (CHIKV), usutu virus (USUV), West Nile virus (WNV) and Zika virus (ZIKV).ResultsCHIK, USUV, ZIKV, and WNV virus were detected in all tested pools using the RT-qPCR assay. Moreover, in the largest mosquito pools (1600 mosquitoes), RT-qPCR was able to detect the targeted viruses using different total RNA quantities (10, 1 and 0.1 ng per reaction) as a template. Correlating the virus titer with the total RNA quantity allowed the prediction of the maximum number of mosquitoes per pool in which the RT-qPCR can theoretically detect the virus infection.ConclusionsMosquito-borne viruses can be reliably detected by RT-qPCR assay in pools of mosquitoes exceeding 1000 specimens. This will represent an important step to expand pathogen-free colonies for mass-rearing sterile males for programmes that have a SIT component by reducing the time and the manpower needed to conduct this quality control process.

Read full abstract
  • Parasites & Vectors
  • Sep 9, 2020
  • Zhaoyang Tang + 9
Open Access
Cite
Save

Abstract 760: miRNA and mRNA detection in plasma-derived extracellular vesicles (EVs) using the nCounter NanoString platform

Abstract Introduction: Although genetic and transcriptomic analysis of tumor tissue can provide useful information for prognosis and treatment decision making, 5-20% of advanced-stage lung cancer patients cannot be biopsied, or the amount of tumor tissue is insufficient for successful analysis. In addition, repeated sampling is often not possible. Liquid biopsies have shown potential to be used as minimally invasive, safe and sensitive alternative for tissue biopsies, but lack of standardized protocols is hampering implementation in the clinic. The nCounter platform could provide the solution for this problem, with an easy-to-use technical workflow and straightforward data analysis. Extracellular vesicles (EVs) are mediators of intercellular communication and may play a role in early cancer development. Therefore, RNA found within EVs can be used as a biomarker for cancer development and progression. In addition, the lipid bilayer of EVs makes their cargo particularly stable and allows the use of biobank stored samples. Methods: EVs were isolated from 600 μL plasma of 19 cancer patients and 10 healthy donors, using the miRCURY® Exosome Serum/Plasma Kit (Qiagen), and total RNA was extracted using TRI Reagent® (MRC Inc) or the automated QIAsymphony® System (Qiagen) with the DSP Virus/Pathogen Kit, after RNAse A (Sigma-Aldrich) treatment to remove plasma cell-free RNA. The Human Immune V2 panel (NanoString Technologies), including 600 mRNA targets, was used to analyze EV-derived mRNA after a pre-amplification (pre-amp) step with the Low RNA Input Amplification Kit. In addition, the Human V3 miRNA panel (NanoString Technologies), including 800 miRNA targets, was used to analyze the same EV samples without pre-amp. Results: Total amount of RNA isolated from EVs was found to be significantly higher using TRI Reagent®, versus automated RNA isolation. In addition, the conditions for the pre-amp step were tested and optimized. A pre-amp of 10 cycles for the mRNA panel was shown to be sufficient to detect mRNA targets in EVs without saturation, and the NanoString retrotranscription (RT) enzyme outperformed the other RT enzyme tested. In addition, supernatant collected during EV isolation was also analyzed, and results showed that the RNA targets were derived from within the EVs. On average, 337 mRNA targets were detected within the EVs, while 157 miRNA targets were detected in the same samples without pre-amp, with no significant differences between cancer patients and healthy donors. Interestingly, most differentially expressed (DE) mRNAs were shown to be lower expressed in cancer patients, while most DE miRNAs were found to be higher expressed in cancer patients. Conclusion: Our results demonstrate that the nCounter NanoString platform can be used for miRNA and mRNA detection in plasma-derived EVs from cancer patients and healthy donors. Further studies will focus on specific mRNA and miRNA expression differences between these two cohorts. Citation Format: Jillian Wilhelmina Bracht, Ana Gimenez-Capitan, Chung-Ying Huang, Carlos Pedraz-Valdunciel, Joselyn Valarezo, Sarah Warren, Rafael Rosell, Miguel Angel Molina-Vila. miRNA and mRNA detection in plasma-derived extracellular vesicles (EVs) using the nCounter NanoString platform [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 760.

Read full abstract
  • Cancer Research
  • Aug 13, 2020
  • Jillian Wilhelmina Bracht + 7
Cite
Save

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • .
  • .
  • .
  • 10
  • 1
  • 2
  • 3
  • 4
  • 5

Popular topics

  • Latest Artificial Intelligence papers
  • Latest Nursing papers
  • Latest Psychology Research papers
  • Latest Sociology Research papers
  • Latest Business Research papers
  • Latest Marketing Research papers
  • Latest Social Research papers
  • Latest Education Research papers
  • Latest Accounting Research papers
  • Latest Mental Health papers
  • Latest Economics papers
  • Latest Education Research papers
  • Latest Climate Change Research papers
  • Latest Mathematics Research papers

Most cited papers

  • Most cited Artificial Intelligence papers
  • Most cited Nursing papers
  • Most cited Psychology Research papers
  • Most cited Sociology Research papers
  • Most cited Business Research papers
  • Most cited Marketing Research papers
  • Most cited Social Research papers
  • Most cited Education Research papers
  • Most cited Accounting Research papers
  • Most cited Mental Health papers
  • Most cited Economics papers
  • Most cited Education Research papers
  • Most cited Climate Change Research papers
  • Most cited Mathematics Research papers

Latest papers from journals

  • Scientific Reports latest papers
  • PLOS ONE latest papers
  • Journal of Clinical Oncology latest papers
  • Nature Communications latest papers
  • BMC Geriatrics latest papers
  • Science of The Total Environment latest papers
  • Medical Physics latest papers
  • Cureus latest papers
  • Cancer Research latest papers
  • Chemosphere latest papers
  • International Journal of Advanced Research in Science latest papers
  • Communication and Technology latest papers

Latest papers from institutions

  • Latest research from French National Centre for Scientific Research
  • Latest research from Chinese Academy of Sciences
  • Latest research from Harvard University
  • Latest research from University of Toronto
  • Latest research from University of Michigan
  • Latest research from University College London
  • Latest research from Stanford University
  • Latest research from The University of Tokyo
  • Latest research from Johns Hopkins University
  • Latest research from University of Washington
  • Latest research from University of Oxford
  • Latest research from University of Cambridge

Popular Collections

  • Research on Reduced Inequalities
  • Research on No Poverty
  • Research on Gender Equality
  • Research on Peace Justice & Strong Institutions
  • Research on Affordable & Clean Energy
  • Research on Quality Education
  • Research on Clean Water & Sanitation
  • Research on COVID-19
  • Research on Monkeypox
  • Research on Medical Specialties
  • Research on Climate Justice
Discovery logo
FacebookTwitterLinkedinInstagram

Download the FREE App

  • Play store Link
  • App store Link
  • Scan QR code to download FREE App

    Scan to download FREE App

  • Google PlayApp Store
FacebookTwitterTwitterInstagram
  • Universities & Institutions
  • Publishers
  • R Discovery PrimeNew
  • Ask R Discovery
  • Blog
  • Accessibility
  • Topics
  • Journals
  • Open Access Papers
  • Year-wise Publications
  • Recently published papers
  • Pre prints
  • Questions
  • FAQs
  • Contact us
Lead the way for us

Your insights are needed to transform us into a better research content provider for researchers.

Share your feedback here.

FacebookTwitterLinkedinInstagram

Copyright 2024 Cactus Communications. All rights reserved.

Privacy PolicyCookies PolicyTerms of UseCareers