Measurements of the contact angle for water, glycerol, formamide, diiodomethane and 1,1,2,2-tetrabromoethane on a quartz surface were made. Using the results obtained, the “geometric mean” approach and long-range and acid-base interaction approach, the dispersion, non-dispersion, Lifshitz-van der Waals and acid-base components of the surface free energy of quartz were determined and compared with those determined in different ways. On the basis of the measurements and calculations it was found that the surface free energy of quartz depends largely on the amounts of silanol groups and physically adsorbed water molecules on its surface. It was also found that the two tested approaches to surface free energy of solids and liquids gave similar results, and it is suggested that the surface free energy of quartz results mainly from dispersion and hydrogen-bond intermolecular interactions.