In the outdoor unit of a room air conditioner, the main factors that made it possible to vary the ability of cooling and heating are the development of BLDC motors, advances in inverter technology, and the development of refrigerant volume control technology. The main reason for this change in cooling and heating capacity is that it is possible to change the RPS of compressors. As the range of the compressor's RPS expands, so does the range of response to load variations. This is mainly based on the capacity of the high-pressure refrigerant produced by the compressor. When the compressor rotates at high speed or low speed, the difference in noise occurs depending on the difference in rotational speed. Of course, fans and motors also contribute to noise fluctuations, but the overall governing factor is the greater contribution of refrigerant from compressors and compressors. The refrigerant flows into the cycle configured in the outdoor unit and varies in speed and flow rate depending on the amount of refrigerant. This results in vibration and noise appearing in the form of radiations, resonances, solid sounds, resonances, and so on. There are several factors that can cause vibration or noise changes depending on the flow velocity and flow rate. In this paper, we selected reactance of compressor motors, mufflers directly connected to compressor discharge ports and accumulator at compressor inlet where fluid vibrations occur the most. First of all, reactance of motor responds quickly to load fluctuations and has a large instantaneous torque to instantaneous load fluctuations. The muffler, which is directly connected to the compressor discharge port, is the first Cavity where high-pressure gas meets, and can evaluate the concentration of kinetic energy that generates noise and improve the collection center to reduce fluctuating noise. The Accumulator is the part with the lowest temperature of refrigerant gas entering the compressor, and the rapid change in the flow path causes the most fluid to generate vibration and radiation of the structure. For this reason, we select three elements first. In this paper, we specifically describe the background of selecting three elements of an air conditioning outdoor unit for the variability of noise over RPS changes. We demonstrate that these factors can review the feasibility of the experiment, explain the results of the analysis, and possibility of reduce the variation noise.