Frequent occurrence of trace antibiotics in reclaimed water is concerning, which inevitably causes aquifer contamination in the case of managed aquifer recharge (MAR). Global governments have formulated strict reclaimed water standards to ensure the safety of water reuse. Recent studies have found that improved antibiotics removal is intimately associated with high ammonia-oxidizing activity. However, the role of NH4+-N in the removal of residual antibiotics of reclaimed water during MAR remains unknown. NH4+-N removal and the effects of ammonia oxidation on antibiotics biodegradation in the aquifer are the most significant facts for solving the above collision. In this work, the effects of NH4+-N (0, 1 and 5 mg/L) in a model refractory antibiotic (oxacillin (OXA), 100 μg/L) attenuation were deciphered by employing three individual simulated MAR columns, which so called N0, N1 and N5. The results showed that 5 mg/L NH4+-N in influent upregulated the abundance of amo genes by 28.9 %-68.0 % in N5. And the enriched functional genes encoding key degradation enzymes enhanced the OXA removal by 18.7 % and alleviated the oxidative stress caused by antibiotics. Subsequently, antibiotic resistance genes (ARGs), mobile gene elements (MGEs) and human bacterial pathogens (HBPs) abundance were all significantly decreased. Moreover, the intimate association between ammonia-oxidizing microorganisms (AOM) and candidate OXA degraders based on microbial network analysis further supported the significance of AOM on OXA biodegradation. This study provides comprehensive evidence that appropriate amounts of NH4+-N are beneficial in antibiotics and antibiotic resistance risk reduction, providing compelling insights for refine NH4+-N recharge limitation.
Read full abstract