In this paper, the photocatalysis material CA+, which uses calcium alginate as carrier and cetyltrimethylammonium bromide as surfactant, was studied. The morphology and structure of the prepared CA+ were characterised by SEM, TEM, FT-IR and Raman spectroscopy. The surface electrical properties and stability of the catalytic materials were evaluated by Zeta potential and cycling performance measurements, and the data were analyzed and processed according to the principle of degradation kinetics. The results show that Ag@AgCl Nanoparticles are distributed on the cross-linked structure of CA in the form of clusters. The prepared CA+ photocatalyst material has good adsorption performance and photocatalytic activity for tetracycline (TC). Temperature has a significant effect on the degradation of TC by photocatalytic materials. The photocatalytic degradation rate is the highest at 40 °C, and the photocatalytic reaction rate was 0.08276 min−1. The photocatalytic degradation process at different temperatures conforms to the quasi first-order reaction kinetics. Adding a certain amount of H2O2 can produce more active species O2 −. The photocatalytic material has the advantages of good stability, short photocatalytic degradation time, high catalytic efficiency, and can be used for the degradation of actual tetracycline polluted wastewater.
Read full abstract