Soft-oxometalates (SOMs) are colloid suspensions of superstructured assemblies of polyoxometalates (POMs) and are found to be very effective photo-catalysts in a number of chemical reactions. The stabilization of SOMs generally requires legends or stabilizers, e.g., polymers and surfactants. In this paper, a light responsive azobenzene surfactant, C10AZOC2N3, was developed and used to stable {Mo132} SOMs. Various techniques such as Dynamic light scattering, TEM, UV-Vis spectra and cyclic voltammetry were employed to characterize the experimental results. The outstanding structure-directing effect of surfactant self-assembly micelles in solution on inorganic counter-anions was demonstrated. Different amount of cyclohexane was solubilized into C10AZOC2N3 micelles to successfully control the size of {Mo132} SOMs cluster. Furthermore, the clusters exposed to UV light for a certain time can be served as a second trigger to control the size of SOMs due to the trans-cis conformation transition of surfactant molecules. The redox potentials of C10AZOC2N3-{Mo132} SOMs were investigated as the cluster size varied. Interestingly, the redox potential of {Mo132} was not affected by the cluster size, indicating that the presence of surfactant did not change the main function of {Mo132} as an electrochemical catalyst, but merely assisted in the size control of SOM aggregation.