End-capped poly(L-lactide) (PLLA) samples with dodecyl or 2-(2-(2-methoxyethoxy)ethoxy)ethyl (MEEE) ester were synthesized by ring-opening polymerization of L-lactide in the presence of zinc dodecanoxide or zinc 2-(2-(2-methoxyethoxy)ethoxy)ethoxide as a catalyst, respectively. On the basis of NMR analysis, it was confirmed that the carboxylic acid chain ends of PLLA molecules were selectively substituted by dodecyl or MEEE ester groups. To evaluate the wettability on the surface of end-capped PLLA films, the advancing contact angle (thetaa) with water was measured. The amorphous PLLA films showed relatively similar thetaa values regardless of the chemical structure of the polymer chain end. In contrast, the thetaa values of semicrystalline films were varied over a wide range, dependent on the chemical structure of the chain end. In addition, the thetaa values of dodecyl ester end-capped PLLA film with low molecular weight increased with an increase in the crystallization temperature. Both the crystallinity and lamellar thickness of dodecyl ester end-capped PLLA films increased with the crystallization temperature. These results suggest that the segregation of the chain ends on the PLLA film surface was strongly affected by the crystallization conditions.