The aim of this study was to compare the addition in culture media of stabilized amorphous calcium carbonate (ACC) versus calcium chloride (CaCl2) or calcium carbonate in crystalline form (CCC) on growth rates among sibling mouse embryos. We evaluated the effect of different ACC concentrations on the rates of embryo compaction at 60 h, blastocyst rate at 84 h and percentage of fully hatched at 108 h following hCG injection. As ACC is stabilized by tripolyphosphate (TPP), we also evaluated the addition of TPP alone to the culture media. Finally, we compared supplemented ACC culture media to one-step SAGE and Irvine cleavage media. The results revealed that ACC accelerates the compaction and blastocyst rates, as well as the percentage of fully hatched embryos in a dose-dependent manner, with an increased positive effect at 2.5 mM. The magnitude of the effect for ACC-supplemented media on the embryo developmental rate was between 30 to 40% (p < 0.01) faster for each stage, compared to both SAGE and Irvine one-step standard media. Embryos cultured with SAGE or Irvine media with or without supplementation of CaCl2 or CCC, did not produce the same improvements as observed with ACC. In conclusion, the ACC demonstrates a rapid modulation effect for restoring media optimal pH. ACC can inhibit cathepsin B activity during in vitro culture of fibroblast cells. The beneficial impact of ACC on cleavage mouse embryos is likely due to an improved buffering effect causing slower pH media variations, which may enhance quality and implantation potential of embryos following in vitro culture.
Read full abstract