Comparison of the influence of temperature and different alkali activators on the reactivity of two types of fly ash (conventional, fluidized) was presented. The main emphasis was put on fluidized fly ash as potential component of binding mixtures containing low amount of cement. Conventional fly ash was used as a reference. It was found that for these materials the key differences affecting products of activation are: availability of calcium and sulfate ions as well as structure of fly ash grains influencing dissolution of aluminate and silicate species. Fluidized fly ash, contrary to conventional fly ash, undergoes reaction in 0.1 M solutions of hydroxides forming mainly ettringite. In the case of 4 M hydroxides, both fly ashes undergo hydration processes. Conventional fly ash formed mainly amorphous aluminosilicate gel, while fluidized fly ash may create zeolitic products especially in the case of elevated temperature of early hydration. Sulfate and alkali ions can be incorporated into aluminosilicate structure of new formed products; however, this process depends strictly on the type of used hydroxide and its concentration. The presence of Ca(OH)2, carbonates and alkali sulfates was also registered in the case of hydrated fluidized fly ash.