Soil microbial mutualists like rhizobia bacteria can promote the establishment of rare, late‐successional legumes. Despite restoration efforts, these mutualists are often absent in the microbiome. Therefore, restoring this mutualism by directly inoculating rare legumes with rhizobia mutualists may increase plant establishment. We inoculated seedlings of Amorpha canescens, Dalea purpurea, and Lespedeza capitata with three strains of species‐specific rhizobia each to investigate how this mutualism would promote growth in the field and in the greenhouse. Because many herbaceous plants are vulnerable to herbivory, we used exclosures for half of our field transplantations to prevent mammalian herbivory. We did not find that rhizobia bacteria directly promoted the growth of our legumes in the field but rather that herbivory and environmental conditions overwhelmed the effects of the rhizobia. Of the plants transplanted, only 17.78% of 180 survived to the end of the growing season, all of which were protected from herbivory. Survival at the end of the growing season was also greater in the northern, drier end of the field site. In the second growing season, plants were more likely to survive in the exclosure treatment, while only four recovered in the open treatment. In the greenhouse, we found increased nodulation with inoculations, supporting the hypothesis that species‐specific mutualists are absent from restoration sites. Though several recent studies have shown that restoring mutualistic interactions has the potential to dramatically improve the outcomes of ecological restoration, our results show that protecting rare species from herbivory after transplantation might achieve greater gains in establishment.
Read full abstract