The effects of ammonium hydroxide concentration and pH on the kinetics and reaction mechanism of oxidative ammonolysis of Repap organosolv lignin were studied. The reactions were carried out at 100°C with an oxygen pressure of 8 bar (116 psi) and 0.4–1.6 M [NH4OH] and 9–12.7 pH. The resulting N‐modified lignins were analyzed for elemental composition and methoxyl group content. An increase in ammonium hydroxide concentration increased the rate of nitrogen incorporation, oxygen consumption, CO2 formation, and lignin dissolution. The rate of nitrogen incorporation was 0.5 order with respect to NH4OH concentration. The amount of oxygen consumed, oxygen incorporated into the lignin, CO2 formed, and OMe groups eliminated per mole of nitrogen incorporated decreased with increasing ammonium hydroxide concentration indicating that the increase in [NH4OH] accelerated nitrogen incorporation more than lignin oxidation. The dependence of the rate of nitrogen incorporation on the reaction pH went through a maximum leading to the conclusion that HO− competes with ammonia in reactions with electrophilic lignin centers resulting in interruption of nitrogen incorporation into the lignin.