As a transitional boundary between terrestrial and aquatic ecosystems, the riparian zone is considered a hotspot for N2 O production because of the active nitrogen processes. Ammoxidation is an important microbial pathway for N2 O production, but the distribution of ammonia oxidizers under different land-use types in the reservoir riparian zone and what role they played in N2 O emissions are still not clear. We investigated spatiotemporal distributions of ammonia-oxidizing archaea (AOA) and bacteria (AOB) and their role in N2 O emissions in different land-use types along the riparian zone of Miyun Reservoir: grassland, sparse woods, and woodland. We found significant differences in both AOA abundance and AOB diversity indices among land-use types. AOA and AOB communities were significantly separated by different land-use types. The main drivers to determine the distribution of ammonia-oxidizing microbial community were soil water content, NH4 + , NO3 - , and total organic carbon (TOC). In situ N2 O flux was highest in woodland with a mean value of 12.28 μg/m2 ·h, and it was substantially decreased by 121% and 123% in sparse woods and grassland. TOC content was decreased by 20% and 40% in sparse woods and grassland compared with woodland, and it was significantly positively correlated with in situ N2 O flux. Meanwhile, AOB diversity indices were significantly correlated with in situ N2 O flux. These results showed that the heterogeneity of physicochemical properties among different land-use types affected the community of AOA and AOB in riparian zones. AOB not AOA, and community diversity rather than abundance, played a role in N2 O emissions.
Read full abstract