The white-edge freshwater whip ray Himantura signifer is ammonotelic in freshwater, but retains the capacities of urea synthesis and ureosmotic osmoregulation to survive in brackish water. The first objective of this study was to examine whether exposure to brackish water would lead to increases in food intake, and/or conservation of nitrogen in H. signifer upon daily feeding. Results obtained showed that a progressive increase in ambient salinity, from 1 per thousand to 15 per thousand over a 10-day period, did not lead to an increase in daily food intake. However, there were significant reductions in daily rates of ammonia and urea excretion in H. signifer during salinity changes, especially between day 5 (in 10 per thousand water) and day 10 (in 15 per thousand water) when compared to those of the control kept in 1 per thousand water. Consequently, there was a significant decrease in the percentage of nitrogen (N) from the food being excreted as nitrogenous waste (ammonia-N+urea-N) during this period. On day 10, the tissue urea contents in fish exposed to 15 per thousand water were significantly greater than those of fish kept in 1 per thousand water, and the excess urea-N accumulated in the former fish could totally account for the cumulative deficit in excretion of urea-N+ammonia-N during the 10-day period. Thus, it can be concluded that H. signifer is N-limited, and conserved more N from food when exposed to brackish water. The conserved N was converted to urea, which was retained in tissues for osmoregulation. The second objective of this study was to elucidate whether the retention of the capacity of N conservation in H. signifer would lead to an accumulation of urea in fish exposed to not only 15 per thousand water, but also 1 per thousand water, upon feeding. For fish pre-acclimated to 1 per thousand water or 15 per thousand water for 10 days and then fasted for 48 h, the rate of ammonia excretion in fish exposed to 15 per thousand water was consistently lower than that of fish exposed to 1 per thousand water, throughout the 36-h post-feeding period. In addition, the hourly rate of urea excretion in the former was significantly lower than that of the latter between hours 12 and 36. There were postprandial increases in ammonia contents in the muscle, liver, stomach, intestine, brain and plasma of fish kept in 1 per thousand water; but postprandial increases in ammonia occurred only in the liver and brain of fish exposed to 15 per thousand water, and the magnitudes of increases in the latter were smaller than those in the former. Indeed, postprandial increases in tissue urea contents occurred in both groups of fish, but the greatest increase in urea content was observed in the muscle of fish exposed to 15 per thousand water. Taken together, these results indicate that H. signifer in freshwater could be confronted with postprandial osmotic stress because of its capacity of conserving N and increasing urea synthesis upon feeding.