Abstract

Ammonia (NH3 + NH4+) is the major nitrogenous waste in teleost fish. NH3 is also the third respiratory gas, playing a role in ventilatory control. However it is also highly toxic. Normally, ammonia excretion through the gills occurs at about the same rate as its metabolic production, but the branchial transport mechanisms have long been controversial. An influential review in this journal has claimed that ammonia excretion in fish is probably limited by diffusion rather than by convection, so that increases in ventilation would have negligible effect on the rate of ammonia excretion. Why then should elevated plasma ammonia stimulate ventilation? The diffusion-limitation argument was made before the discovery of Rhesus (Rh) glycoproteins and the associated metabolon in the gills, which serve to greatly increase branchial ammonia permeability under conditions of ammonia loading. Therefore, we hypothesized here that (i) in accord with the diffusion-limitation concept, changes in ventilation would not affect the rate of ammonia excretion under conditions where branchial Rh metabolon function would be low (resting trout with low plasma ammonia levels). However, we also hypothesized that (ii) in accord with convective limitation, changes in ventilation would influence the rate of ammonia excretion under conditions where diffusion limitation was removed because branchial Rh metabolon function would be high (ammonia-loaded trout with high plasma ammonia levels). We used variations in environmental O2 levels to manipulate ventilation in trout under control or ammonia-loaded conditions – i.e. hyperventilation in moderate hypoxia or hypoventilation in moderate hyperoxia. In accord with hypothesis (i), under resting conditions, ammonia excretion was insensitive to experimentally induced changes in ventilation. Ammonia-loading by NH4HCO3 infusion for 30h + increased the gill mRNA expressions of two key metabolon components (Rhcg2, V-H+-ATPase or HAT), together with a 7.5-fold increase in plasma ammonia concentration and a 3-fold increase in ammonia excretion rate. In accord with hypothesis (ii), in these fish, hypoxia-induced increases in ventilation elevated the ammonia excretion rate and lowered plasma ammonia, while hyperoxia-induced decreases in ventilation reduced the ammonia excretion rate, and elevated plasma ammonia concentration. We conclude that under conditions of natural ammonia loading (e.g. meal digestion, post-exercise recovery), diffusion-limitation is removed by Rh metabolon upregulation, such that the stimulation of ventilation by elevated plasma ammonia can play an important role in clearing the potentially toxic ammonia load.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call