In order to reduce odor emissions and surface water pollution while storing manure in field heaps near a barn, there is a challenge in properly designing manure-storage areas. Therefore, it is important to assess what solutions and conditions, considering environmental requirements, should be considered when storing manure in field heaps. The goal of the research is to determine the impact of various factors on the risk of nutrient leaching, soil, and gas emissions from solid manure heaps, considering climatic factors in the environment. Through various scientific studies, a manure pile model has been developed and evaluated for its impact on the risk of potential leaching and odor emissions (using hyperspectral gas emission analysis mass flow method) from manure and the dynamics of the 0–80 cm soil layer properties (nitrate (N-NO3) and nitrite (N-NO2), ammonia (NH3), mineral, and total N). Based on the research results, requirements for manure management and storage during the prohibited fertilization period were established, considering the requirements for nitrates from agricultural sources in Lithuania. An optimal new manure heap model has been identified—a layer of not less than 20 cm of compacted straw (density 150–200 kg m−3) or a 10 cm layer of peat for absorbing manure slurries is formed on the soil surface, the manure heap is surrounded by an earth embankment not less than 30 cm high, the manure heap is covered with a layer of finely chopped straw not less than 10 cm thick, or 5 cm of sawdust, or 5 cm of peat. The manure is stored in the heap for 6–12 months. Following the research results, requirements for manure management and storage during the prohibited fertilization period were established, considering the requirements for nitrates from agricultural sources in Lithuania, applicable to the northern part of the temperate climate zone and applying similar requirements to the relevant countries.
Read full abstract