The high impact and penetration resistance of the cuticle in the lobster Homarus americanus can be attributed to its unique twisted plywood structure. Hybridization of two helical structures was observed in the exoskeleton, with different pitch angles and ply thickness of the exocuticle and endocuticle within the exoskeleton. Given the survival challenges posed by the natural environment, it is worthwhile to study why it evolved into a hybrid helical rather than a uniform helical structure. In light of this, we have proposed an innovative bionic hybrid helical structure design strategy that goes beyond simply reducing the pitch angle. In this paper, we replicated complex biological microstructures by introducing two types of pitch angles and ply thicknesses for regional configurations. Quasi Static Indentation (QSI) full-penetration experiments were conducted. Experimental results revealed that the exocuticle with a large pitch angle and small ply thickness possesses a higher knee load under the penetration test, which provides a higher initial damage threshold. On the other hand, the endocuticle with a small pitch angle and large ply thickness induces higher damage dissipation, which provides superior protective performance. These research findings demonstrate that ply hybridization can be a promising method for microstructure design to improve the penetration resistance of thin laminates and serve as a reference for developing more refined gradient helical structure designs.