Reliable ambiguity resolution (AR) is essential to real-time kinematic (RTK) positioning and its applications, since incorrect ambiguity fixing can lead to largely biased positioning solutions. A partial ambiguity fixing technique is developed to improve the reliability of AR, involving partial ambiguity decorrelation (PAD) and partial ambiguity resolution (PAR). Decorrelation transformation could substantially amplify the biases in the phase measurements. The purpose of PAD is to find the optimum trade-off between decorrelation and worst-case bias amplification. The concept of PAR refers to the case where only a subset of the ambiguities can be fixed correctly to their integers in the integer least squares (ILS) estimation system at high success rates. As a result, RTK solutions can be derived from these integer-fixed phase measurements. This is meaningful provided that the number of reliably resolved phase measurements is sufficiently large for least-square estimation of RTK solutions as well. Considering the GPS constellation alone, partially fixed measurements are often insufficient for positioning. The AR reliability is usually characterised by the AR success rate. In this contribution, an AR validation decision matrix is firstly introduced to understand the impact of success rate. Moreover the AR risk probability is included into a more complete evaluation of the AR reliability. We use 16 ambiguity variance–covariance matrices with different levels of success rate to analyse the relation between success rate and AR risk probability. Next, the paper examines during the PAD process, how a bias in one measurement is propagated and amplified onto many others, leading to more than one wrong integer and to affect the success probability. Furthermore, the paper proposes a partial ambiguity fixing procedure with a predefined success rate criterion and ratio test in the ambiguity validation process. In this paper, the Galileo constellation data is tested with simulated observations. Numerical results from our experiment clearly demonstrate that only when the computed success rate is very high, the AR validation can provide decisions about the correctness of AR which are close to real world, with both low AR risk and false alarm probabilities. The results also indicate that the PAR procedure can automatically chose adequate number of ambiguities to fix at given high-success rate from the multiple constellations instead of fixing all the ambiguities. This is a benefit that multiple GNSS constellations can offer.