Rare plant and vertebrate species have been documented to contribute disproportionately to the total morphological structure of species assemblages. These species often possess morphologically extreme traits and occupy the boundaries of morphological space. As rare species are at greater risk of extinction than more widely distributed species, human‐induced disturbances can strongly affect ecosystem functions related to assemblage morphology. Here, we assess to what extent the distributions of ant morphological traits are supported by morphologically extreme species and how they are distributed among habitats in a global biodiversity hotspot, the Brazilian Amazon. We used a morphological database comprising 15 continuous morphological traits and 977 expert‐validated ant species distributed across the Brazilian Amazon. We produced species range estimates using species distribution models or alpha hulls (when few records were available). Next, we conducted a principal components analysis to combine traits into a space with reduced dimensionality (morphospace). Then, we identified morphologically extreme species in this space and quantified their contributions to morphological diversity across different habitat types in the Brazilian Amazon Basin. We identified 114 morphologically extreme ant species across the Amazon ant morphospace. These species also accounted for a large percentage of morphospace filling, exceeding 99% representation in the most disturbed habitats in the Amazon. Our results suggest that a few morphologically extreme species capture most of the variation in ant morphology and, therefore, the spectrum of ecosystem functions performed by ants in the Brazilian Amazon Basin. Further, unlike in many other groups, these extreme morphologies were represented by the set of most common species. These results suggest greater functional redundancy and resilience in Brazilian Amazon ants, but more broadly, they contribute to our understanding of ecological processes that sustain ecosystem functions.