AimMesenchymal stem cells (MSCs) have emerged as an intriguing candidate in cell therapy for treating neurodegenerative diseases, including Alzheimer's disease (AD). To achieve the maximum efficiency of cell therapy, determining the optimal dose of MSCs is essential. This study was conducted to assess the dose-dependent therapeutic response of MSCs against pathological and behavioral AD-associated alterations. MethodsAβ1-42 was injected intrahippocampally to establish an AD rat model. The MWM test was utilized to evaluate the animal's behavioral functions after receiving low and high doses of MSCs in the hippocampus region. ELISA and RT-qPCR were also employed to assess the concentration of markers related to antioxidant activity and inflammation and the gene expression related to apoptosis in the hippocampus region, respectively. ResultsLow-dose MSC transplantation by increasing the concentrations of the antioxidant GSH, the anti-inflammatory cytokine IL-10, as well as by lowering the concentrations of TNF-α, and the expression levels of apoptotic factors (Bax and caspase 3), exerted a neuroprotective effect in the hippocampus of AD rats and relatively ameliorated spatial learning and memory impairments. However, increasing the dose of MSCs decreased the therapeutic benefits of these cells and had no significant effect on the recovery of behavioral disorders. ConclusionOur findings reveal the dose-dependent neuroprotective effect of MSCs in AD. The therapeutic response of MSCs to ameliorate the pathological and behavioral alterations associated with AD is attenuated when the dosage of MSCs is increased.