COPD patients suffer from dysregulated and suppressed immune functionality, determined by their loss of degranulating capacity. Here we provide crucial information on the presence of degranulated mast cells (MCs) in COPD airways and demonstrate their relationship to lung physiology and airway remodelling. Small airway lung resections from non-smoking controls (NC), normal lung function smokers (NLFS), small airway disease (SAD), and mild-to-moderate COPD current smokers (COPD-CS) and ex-smokers (COPD-ES) were dual immuno-stained with MC tryptase and degranulation marker lysosome-associated membrane protein (LAMP)-1. Total MCs, degranulating MCs and non-MCs were enumerated in small airway epithelium and subepithelium, and in alveolar septa. In the small airway wall subepithelial areas, COPD-CS and COPD-ES patients had significantly lower MCs than the NC group (p<0.05), although the numbers were considerably higher in the small airway epithelium (p<0.01). Degranulating non-MCs were higher in SAD (p<0.05) than in COPD in the small airway subepithelium. In contrast, there were significant increases in total MCs (degranulated and non-degranulated) and degranulated non-MCs in the alveolar septum of COPD patients compared with the NC group (p<001). The lower numbers of MCs in the subepithelium correlated with lower forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) and forced expiratory flow at 25-75% of FVC (FEF25-75%), higher smoking rates in COPD patients, and increased small airway wall thickness and extracellular matrix. The increase in MCs in the alveolar septum negatively correlated with FEF25-75%. This study is the first to assess the differential pattern of MC, degranulating MC and non-MC populations in the small airways and alveoli of COPD patients. The spatial positioning of the MCs within the airways showed variable correlations with lung function.