The rupture of Vale S.A. mining tailings dam in Brumadinho, Brazil, in January 2019 had significant environmental impacts on the Paraopeba River basin. Additionally, severe floods in early 2022 contributed to the transport of particles in the river. This study aimed to evaluate the cytotoxic and genotoxic potential of Paraopeba River water. Thus, the Allium cepa test system was applied, along with physicochemical analyses, flow cytometry, and metal concentration, comparing the results between the rainy and dry seasons three years after the dam rupture. The tests were conducted on water samples collected during three periods: January 2022, July 2022, and January 2023, at five points along the river and its tributaries. Allium cepa seeds were exposed to the collected water samples, as well as negative (water) and positive (trifluralin) controls. Cytotoxicity was evaluated using the mitotic index and flow cytometry, and genotoxicity by the chromosomal alterations index. The analysis of metals and physicochemical parameters revealed that most values complied with current regulations. However, there were exceptions, with ammonia levels exceeding the permitted limits at all points in the three collections. High levels of aluminum, iron and nitrite were found at most points, before and after the dam collapse, mainly during the rainy season. This indicates the impact of rainfall on water quality, which increases the transport of contaminating particles, probably resulting from human activities and the high concentration of nitrogen compounds released into the Paraopeba River. The results of the bioassay suggest a relatively low cytotoxic and genotoxic potential of the samples evaluated. However, this study highlights the continuous contamination of the river by unidentified anthropogenic factors, requiring continuous monitoring and analysis to track the evolution of water quality and its environmental effects.
Read full abstract