Aluminum (Al), one of the three most prevalent metals in the Earth's crust, adversely impacts all metabolic systems of living organisms due to its extensive utilization by humans. It is known that omega-3 fatty acids (ω-3FA) protect the organism against diseases and have positive effects on the immune system. The aim of the study was to investigate the effect of ω-3FA on 8-OH-2-deoxyguanosine (8-OHdG), glutathione (GSH) levels and adenosine deaminase (ADA), paraoxonase (PON), and catalase (CAT) activities in rats with acute aluminum toxicity. The study also aimed to investigate the antioxidant system, as well as Al, zinc (Zn), and iron (Fe) levels. Forty Sprague-Dawley rats (n = 40) were used in the study and the rats were divided into four equal groups (n = 10). In group I, 0.5mL of 0.9% saline solution (NaCI) was injected intraperitoneally. Group II was injected with 34mg/kg aluminum chloride (AlCI3) intraperitoneally. Group III received 400mg/kg ω-3FA for 7days and group IV received both AlCI3 and 400mg/kg ω-3FA for 7days. At the end of the study, blood samples were obtained by cardiac puncture. The findings showed that Al exposure increased serum 8-OHdG and total oxidant status (TOS) levels, as well as ADA activity, which are markers associated with oxidative damage. Conversely, PON and CAT activities, GSH, and total antioxidant status (TAS) levels decreased compared to the control group. Furthermore, Zn and Fe levels decreased as Al levels increased. In conclusion, Al has the capacity to induce oxidative damage and lipid peroxidation, while ω-3 fatty acids may mitigate this damage through a regulatory mechanism. Moreover, ω-3-FA could be used as a therapeutic agent that reduces Al toxicity.