Abstract
The objective of the study was to investigate the association between catatonia in autism spectrum disorder (ASD) and the levels of hair and serum trace elements and minerals in children with ASD. The levels of hair and serum trace elements and minerals of boys suffering from ASD with (n = 30) and without (n = 30) catatonia, as well as 30 age- and sex-matched neurotypical controls were assessed using ICP-MS. Hair calcium (Ca) and selenium (Se) levels were lower in ASD patients as compared to the controls. Hair mercury (Hg) levels in ASD patients were more than 3-fold and 2-fold higher as compared to the controls and children with catatonia in ASD. Hair iodine (I) and manganese (Mn) were the lowest and the highest in ASD + Catatonia, respectively. Serum aluminium (Al) and cadmium (Cd) levels in healthy controls were significantly higher in comparison to the patients of both groups. Serum chromium (Cr), copper (Cu) levels were significantly increased in patients with ASD and catatonia, whereas vanadium (V) levels were elevated in patients both with and without catatonia. Multiple regression analysis demonstrated that hair Hg and serum Al and Cd levels were negatively associated with catatonia in ASD in crude and adjusted models. Although the etiology of catatonia in ASD is unclear, the obtained data demonstrate that catatonic symptoms in ASD may be at least partially mediated by altered trace element levels. Further studies are required to elucidate the role of trace elements in the potential signaling mechanisms of catatonia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.