A series of chemical elements from the chemical composition of the packs of liquid food products migrate inside them or they combine with other chemical elements existing in the food, resulting in chemical compounds that worsen the quality of the food. In the present paper, layers of food stainless steel were deposited using thermal arc spraying on an aluminum alloy substrate to stop the migration of aluminum ions inside liquid food products. The physical-chemical and mechanical properties of the protection system: stainless steel layer used in the food industry (suggestively called: food-grade stainless steel)—aluminum substrate were investigated, and then the organoleptic properties of the food liquids that came into contact with the deposit were evaluated. It was found that food-gradestainless steel deposits have low porosity (3.8%) and relatively high adhesion and hardness, which allows complete isolation of the substrate material. The investigations carried out on the properties of food liquids that come into contact with the stainless steel deposit revealed the fact that it perfectly seals the aluminum start. The food-grade stainless steel coating (80T) was much better and safer for preserving dairy products maintaining a constant acidity up to 17 degrees Thorner, wines (with an average acidity of 3.5–4 degrees), juices (with natural pigments), and oils (with a good absorbance level correlated with clarity). This aspect suggests that the created system can be successfully used to manufacture containers for the transport of liquid products.
Read full abstract