Abstract
The wetting behaviors of Al-Si-Cu-Mg-Zn brazing materials on 5083 aluminum alloy substrate were investigated through changing the proportion of Mg from 0 to 2 wt.%. The experimental results showed that the welding process goes through the three following stages: slow spreading, fast spreading, and stabilizing. The wettability of the brazing material was improved effectively, and the porosity of the interfacial layer was reduced, with the addition of Mg. With Mg content at 1 wt.%, the wetting diameter reached a maximum value of 20.46 mm. The reaction mechanism of the wetted interfacial layer between the brazing material and substrate alloy was illustrated with dynamic data, provided through experimentation and simulated thermodynamic calculation, and showed that the wetting behavior of the resultant Al-7.5Si-15Cu-1Mg-5Zn brazing material was dominated primarily by a diffusion reaction from elemental magnesium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.